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Preface to the Second Edition 

In this book we lead the student to an understanding of elementary linear 
algebra by emphasizing the geometric significance of the subject. 

Our experience in teaching undergraduates over the years has convinced 
us that students learn the new ideas of linear algebra best when these 
ideas are grounded in the familiar geometry of two and three dimensions. 
Many important notions of linear algebra already occur in these dimen­
sions in a non-trivial way, and a student with a confident grasp of the 
ideas will encounter little difficulty in extending them to higher dimensions 
and to more abstract algebraic systems. Moreover, we feel that this 
geometric approach provides a solid basis for the linear algebra needed in 
engineering, physics, biology, and chemistry, as well as in economics and 
statistics. 

The great advantage of beginning with a thorough study of the linear 
algebra of the plane is that students are introduced quickly to the most 
important new concepts while they are still on the familiar ground of 
two-dimensional geometry. In short order, the student sees and uses the 
notions of dot product, linear transformations, determinants, eigenvalues, 
and quadratic forms. This is done in Chapters 2.0-2.7. 

Then, the very same outline is used in Chapters 3.0-3.7 to present the 
linear algebra of three-dimensional space, so that the former ideas are 
reinforced while new concepts are being introduced. 

In Chapters 4.0-4.2, we deal with geometry in IR" for n ;;:::: 4. We intro­
duce linear transformations and matrices in 1R4, and we point out that the 
step from 1R4 to IR" with n > 4 is now almost immediate. In Chapters 4.3 
and 4.4, we treat systems of linear equations in n variables. 

In the present edition, we have added Chapter 5 on vector spaces, 
Chapter 6 on inner products on a vector space, and Chapter 7 on 
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symmetric n x n matrices and quadratic forms in n variables. Finally, in 
Chapter 8 we deal with three applications: 

(1) differential systems, that is, systems of linear first-order differential 
equations; 

(2) least-squares method in data analysis; and 
(3) curvature of surfaces in 1ij3, which are given as graphs of functions of 

two variables. 

Except for Chapter 8, the student need only know basic high-school 
algebra and geometry and introductory trigonometry in order to read this 
book. In fact, we believe that high-school seniors who are interested in 
mathematics could read much of this book on their own. To read Chapter 
8, students should have a knowledge of elementary calculus. 
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CHAPTER 1.0 

Vectors in the Line 

Analytic geometry begins with the line. Every point on the line has a real 
number as its coordinate and every real number is the coordinate of exactly 
one point. A vector in the line is a directed line segment from the origin to a 
point with coordinate x. We denote this vector by a single capital letter X. 
The collection of all vectors in the line is denoted by IR 1• 

We add two vectors by adding their coordinates, so if U has coordinate 
u, then X + U has coordinate x + u. To multiply a vector X by a real 
number r, we multiply the coordinate by r, so the coordinate of rX is rx. 
The vector with coordinate zero is denoted by O. (See Fig. 1.1.) 

The familiar properties of real numbers then lead to corresponding 
properties for vectors in I-space. For any vectors X, U, Wand any real 
numbers rand s we have: 

X+U=U+X. 
(X + U) + W = X + (U + W). 
For all X, 0 + X = X = X + O. 
For any X, there is a vector - X such that X + ( - X) = O. 
r(X + U) = rX + rU 
(r + s)X = rX + sX 
r(sX) = (rs)X 
IX=X 

We can define the length of a vector X with coordinate x as the absolute 
value of x, i.e., the distance from the point labelled x to the origin. We 

denote this length by IXI and we may write IXI = R . (We always under­
stand this symbol to stand for the non-negative square root.) Then 0 is the 
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unique vector of the length 0 and there are just two vectors with length 1, 
with coordinates 1 and - 1. 



CHAPTER 2.0 

The Geometry of Vectors in the Plane 

Many of the familiar theorems of plane geometry appear in a new light 
when we rephrase them in the language of vectors. This is particularly true 
for theorems which are usually expressed in the language of analytic or 
coordinate geometry, because vector notation enables us to use a single 
symbol to refer to a pair of numbers which gives the coordinates of a point. 
Not only does this give us convenient notations for expressing important 
results, but it also allows us to concentrate on algebraic properties of 
vectors, and these enable us to apply the techniques used in plane geometry 
to study problems in space, in higher dimensions, and also in situations 
from calculus and differential equations which at first have little resem­
blance to plane geometry. Thus, we begin our study of linear algebra with 
the study of the geometry of vectors in the plane. 

§ 1. The Algebra of Vectors 

In vector geometry we define a vector in the plane as a pair of numbers 

(;) written in column form, with the first 'coordinate x written above the 

second coordinate y. We designate this vector by a single capital letter X, 

i.e., we write X = (;). We can picture the vector X as an arrow, or directed 

line segment, starting at the origin in the coordinate plane and ending at 

the point with coordinates x and y. We illustrate the vectors A = (i), 
B =U), c =(j), and D =(~) in Figure 2.1. 



4 Linear Algebra Through Geometry 

Figure 2.1 

We add two vectors by adding their components, so if X = (~) and 

U =(~), we have 

X + U = (~t ~). (I) 

Thus, in the above diagram, we have A + B = C, since 

A + B = (i) + U) = n!~) = (j) = c. 

We multiply a vector X by a number r by multiplying each coordinate of 
X by r, i.e., 

(2) 

In Fig. 2.1, D =(;) = 2U) = 2B, and we also have B = !D. 

Multiplying by a number r scales the vector X giving a longer vector rX 
if r > I and a shorter vector rX if 0 < r < 1. Such multiplication of a vector 
by a number is called scalar multiplication, and the number r is called a 
scalar. If r = I, then the result is the vector itself, so IX = X. If r = 0, then 

multiplication of any vector by r = 0 yields the zero vector (g), denoted by 

o = ( g). If X is not the zero vector, then the scalar multiples of X all lie on 

a line through the origin and the point at the endpoint of the arrow 
representing X. We call this line the line along X. If r > 0, we get the points 

on the ray from (g) through (~), while if r < 0, we get the points on the 

opposite ray. In particular, if r = - I, we get the vector (- I)X = 
( - 1)( ~ ) = ( -= ~) which has the same length as X but the opposite 
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Figure 2.2 

direction. We denote this vector by - X = ( == ;) and we note that 

X + ( - X) = (~ ) + ( =;) = (~ : ~ =;n = (~) = O. (3 ) 

We say that the vector - X is the negative of X or the additive inverse of X. 

In Figure 2.2, we indicate some scalar multiples of the vectors A = ( i ) 
and B =(~). 

Two particularly important vectors are E. = (~) and E2 = (~), which we 

call the basis vectors of the plane. The collection of all scalar multiples 

rEI = r( ~) = (~) of E. then gives the first coordinate axis, and the second 

coordinate axis is given similarly by s~ = s( ~) = ( ~). Since X = ( ; ) 

= ( ~) + ( ~ ) = x( ~) + Y( ~) = xE. + yE2' we may express any vector X 

uniquely as a sum of one vector from the first coordinate axis and one 
vector from the second coordinate axis. Thus, 

and, similarly, D=(~) =2E i +4E2 • 
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(~)=YE. r-------~:::>IX =(;) =xE. +yE. 

xE. =(~) 

Figure 2.3 

Writing a vector in this way expresses the point (~) as the fourth vertex 

of a rectangle whose other three coordinates are (~), (~), and (~). (See 

Fig. 2.3.) 
More generally, we may obtain a geometric interpretation of vector 

addition as follows. If we start with the triangle with vertices (~), (~), (~) 

( u + X) 
v+y 

(~) 

Figure 2.4 
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and move it parallel to itself so that its first vertex lies on (~), then the 

other two vertices lie on (U ~ X) and (~ t ;), respectively. (See Fig. 2.4.) 

Thus, the sum of the vectors X = ( ~) and U = ( ~) can be obtained by 

translating the directed segment from 0 to X parallel to itself until its 
beginning point lies at U. The new endpoint will represent U + X, and this 
will be the fourth coordinate of a parallelogram with U, 0, and X as the 
other three vertices. 

In our diagrams we have pictured addition of a vector X with positive 
coordinates, but a similar argument shows that the parallelogram interpre­
tation is still valid if one or both coordinates are negative or zero. 

By referring either to the coordinate description or the geometric descrip­
tion, we can establish the following algebraic properties of vector addition 
and scalar multiplication which are analogous to familiar facts about 
arithmetic of numbers: 

(4) X+U=U+X. Commutative law for vectors 
(5) (X + U) + A = X + (U + A). Associative law for vectors 
(6) There is a vector 0 such that 

X + 0 = X = 0 + X for all X. Additive identity 
(7) For any X there is a vector 

- X such that X + ( - X) = O. Additive inverse 
(8) reX + U) = rX + rU. Distributive law for vectors 
(9) (r + s)(X) = rX + sX. Distributive law for scalars 

(10) r(sX) = (rs)X. Associative law for scalars 
(II) I . X = X for each X. 

Note that it is possible for the parallelogram to collapse to a doubly 
covered line segment if we add two multiples of the same vector. In Fig. 
2.5, we show the parallelograms for B + B, A + B, and A + ( - A). 

We can use the negative of a vector to help define the notion of difference 
U - X of the vectors X and U. (See Fig. 2.6.) We define 

U - X = U + ( - X), 

so, in coordinates, 

( ~) - ( ~) = U - X = U + ( - X) = (~) + ( = ;) = (~ = ;). 
Since (U-X)+X=U+«-X)+X)=U+O=U, we see that U-X is 
the vector we add to X to get U. Thus, if we move U - X parallel to itself 
until its beginning point lies on X, we get the directed line segment from X 
to U. Thus, 



8 Linear Algebra Through Geometry 

A+B 

-A 

Figure 2.5 

A pair of vectors A, B is said to be linearly dependent if one of them is a 
multiple of the other. If A = 0, then the pair A, B is linearly dependent, 
since 0 = 0 . B no matter what B is. If A =1= 0 and the pair A, B is linearly 
dependent, then B = tA for some t. If B = 0, then we use t = 0, but if A 
and B are both nonzero, we have B = tA and (l/t)B = A, so each of the 
vectors is a multiple of the other. 

If A, B is a linearly dependent pair of vectors and both A and Bare 
nonzero, then the vectors rA for different values of r all lie on a line 
through the origin. The fact that A, B is a linearly dependent pair means 
that B lies on the line determined by A. 

U + (-X) 

-X 

Figure 2.6 
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Exercise 1. For which choice of x will the following pairs be linearly dependent? 

(a) ((n,(i)), (b) ((;2)'( 93 )), 

(c) ((~),G)), (d) ((;2)'C)), 
Exercise 2. True of false? If A is a scalar multiple of D, then D is a multiple of A. 

Exercise 3. True or false? If A is a nonzero scalar multiple of D, then D is a nonzero 
scalar multiple of A. 

Just as the multiples tX of a nonzero vector X give a description of a line 
through the origin, we may describe a line through a point V parallel to the 
vector X by taking the sum of V and all multiples of X. The line is then 
given by V + tX for all real t. (See Fig. 2.7.) 

For example, the line through B = ( ~) parallel to the vector A = ( ~) is 

given by X = B + t A = ( ~) + t( ~ ) = ( ~) + ( 3/) = ( 21 -: 3/ ). This is called 

the parametric representation of a line in the plane, since the coordi­
nates x = 2 + 3t and y = I + t are given linear functions of the param­
eter t. Similarly, the line given by the parametric equation in coordi-

nates (~) = ( ~ : i~) can be written in vector form as X = ( ~ ) + 

(i~) =(i) + t(i) = A + to. 

Exercise 4. Write an equation of the line through (!) parallel to the vector (D. 

x 
U + (-X) 

U-2X 

Figure 2.7 



10 Linear Algebra Through Geometry 

Exercise 5. Write an equation for the line through A =(n and B =(~). Hint: 

This line will go through B and be parallel to the vector B - A. 

Exercise 6. Show that the parametric equation X = V + t(U - V) represents the 
line through U and V if U and V are any two vectors which are not equal. 

By the Pythagorean Theorem, the distance from a point (~) to the 

.. (0) . . 1 2 2 . 
ongm ° IS VX + y ,and we defme this number to be the length of the 

vector X = (~), written IXI. For example, if X = (!), then IXI = b 2 + 42 

= 5, while lEd = I ( 6) I = I and 101 = )02 + 02 = 0. Since the square root is 

always considered to be positive or zero, the length of a vector is never 

negative, and in fact IXI is positive unless X = (~). 

EXAMPLE 1. IX - VI = I(~) - (~)I = I(~ = ~)I = ~(X - U)L + (y - V)2. 

For any scalar r, we h-:.ve 

IrXI = I( ~;)I = ~X)2 + (ry)2 = ~r2x2 + ry2 = Irl~x2 + y2 = IrIIXI. 

Thus, the length of a scalar multiple of a vector is the length of the vector 
multiplied by the absolute value of the scalar. For example, I - 5XI = 

1- 511XI = 51XI· 

Exercise 7. Show that the midpoint of the segment joining points X and U is 
t(X + U), i.e. show that this point lies on the line through X and U and is equidistant 
from X and U. 

If X *( ~), then X * 0, so we may scale by the reciprocal (1 /IX!) to get a 

vector (l/IX!)X. This vector lies along the ray from 0 to X and it has length 
equal to I since 

The vectors of length I a're called unit vectors, and they are represented 
by the points on the unit circle in the coordinate plane. The vector (l/IXI)X 
is represented by the point where the ray from 0 to X intersects. this unit 

circle. (See Fig. 2.8). 
Any vector on the unit circle may be described by its angle 0 from the 

ray along the positive x-axis to the ray along the unit vector. We call 0 the 
polar angle of the vector. We may then write the unit vector using 

. . f' (cosO) tngonometnc unctIOns as sin 0 . 
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Figure 2.8 

If X is any vector, we have 

X 1_ fcosfJ) 
fXI- \~in () 

X = IXI( _1 X) = IXI( C?S()) = (IXIC?S()) 
IXI sm () IXlsm () 

11 

x 

for some angle (). This representation of X as a positive scalar multiple of a 
unit vector is called the polar form of the vector X, since we have written 
the coordinates of X in the form of polar coordinates. 

EXAMPLE 2. If X = (~), we have X = 3EJ, where E J is the unit vector 

( 1) =(C~S(O)). If X=(I), then X=Ii[I/Ii] =1i(C?S()), where () o sm (0) 1 1/ Ii sm () 

= 45° = 'IT/4. 

§2. The Dot Product 

An extremely useful notion in linear algebra is the dot product of two 
vectors X and U defined by 

X· U = (;) . (~) = xu + yv. (12 ) 
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The dot product of two vectors is then a number formed by adding the 
product of their first coordinates to the product of their second coordinates. 

For example, if A = (n and B = (~) then A· B = 3 . 1 + 1 . 2 = 5 and 

A . A = 3 . 3 + 1 . 1 = 10. Note that E] . E] = 1 . 1 + 0 . 0 = 1 while E] . E2 

= (~) . (~) = 1 ·0+ 0 . 1 = O. 

In general, X . X = (~ ) . (~) = x 2 + y2 = !X!2, so the length of any vec­

tor is the square root of the dot product of the vector with itself. We 
therefore have X . X > 0 for all X, with equality if and only if X = O. 

The dot product has certain algebraic properties that are similar to 
properties of ordinary multiplication of numbers: 

(13) X· U = U . X 
(14) (rX) . U = r(X . U) 

(IS) A· (X + U) = A . X + A . U 

Commutative law for dot product 
Associative law for scalar and dot 
product 
Distributive law for dot product 

Each of these properties can be established easily by referring to the 

coordinate definition. For example, if A = (~), X = ( ~), and U = (~), we 

have 

A· (X + U) = (~). (;:~) = a(x + u) + b(y + v) 

= (ax + by) + (au + bv) = (~) . ( ;) + (~) . (~) 
=A·X+A·U. 

In ordinary multiplication of real numbers, the product ax equals zero 
only if either a = 0 or x = O. Note, however, that it is possible for the dot 
product of two vectors to be zero even if neither vector is equal to zero. For 

example, (;).( ~ I) = 2( -I) + 2· I = O. (See Fig. 2.9.) 

Exercise 8. Show that if rX = 0, then either r = 0 or X = o. 

We may ask under which circumstances the dot product of two nonzero 

vectors X and U will be zero, i.e., when do we have X' U = ( ~ ) . (~) 
= xu + yv = O? One possibility is that one vector lies in the first coordinate 
axis and the other lies in the second coordinate axis, in which case the two 
vectors are perpendicular. If X does not lie in either coordinate axis, then 

x "* 0 and y "* O. The slope of the line from the origin through ( ~) is Y / x, 

and this is not equal to zero. Since xu + yv = 0, it follows that yv = - ux. 
If u = 0, then v = 0 as well. If u"* 0, then ux"* 0, so - 1 = yv / ux = 
(y / x)( v / u). Thus, either U = 0 or the line from the origin to U = (~) has 
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Figure 2.9 

slope v / u equal to the negative reciprocal of y / x, the slope of the line from 
the origin to X. Therefore, these two lines must be perpendicular. It follows 
that in every case if the dot product of two nonzero vectors is zero, then the 
two vectors are perpendicular. 

Retracing our steps, we easily see that, conversely, if X and U are any 
two perpendicular vectors, then X . U = O. 

Exercise 9. Show that for any vector ( ~), we have ( ~) perpendicular to the vector 

(;). 

Note that the line with equation 

ax + by=O 

may be described in two equivalent ways: 

(i) The set of vectors X = ( ~) which are perpendicular to the vector (:). 

(ii) The line along the vector ( ~ b) (by Exercise 9, the vector ( ~ b) is 

perpendicular to (:). 

Exercise 10. Find a vector U such that the line with equation 5x + 2y = 0 lies 
along U. 

Exercise 11. Find an equation of the form ax + by = 0 for the line along the 

vector n). 
Exercise 12. Find a vector U such that the line with equation y = 2x lies along U. 
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For any vector X = ( ;), we have X· EI = ( ; ) . (~) = (x . 1) + 
(y . 0) = x. Thus, the dot product of X with the unit vector EI is the 
coordinate of the projection of X to the first coordinate axis. Similarly, the 

dot product X . E2 = ( ; ) . (~) = Y of the vector X with the unit vector E2 is 

the coordinate of the projection of X to the second coordinate axis. 

More generally, if we have any unit vector W = (c?S <p), we may use the 
sm<p 

polar form of the vector X = IXI( C?S 0 ) to get a geometric interpretation of 
smO 

the dot product of X and W (see Fig. 2.10). We have 

= IXI( cos 0 cos <p + sin 0 sin <p). 

There is a basic trigonometric identity that states that 

cos 0 cos <p + sin 0 sin <p = cos( 0 - <p) = cos( <p - 0), ( 16) 

so we have X· W = IXI· cos(O - <p). Therefore, the dot product of a vector 
X with a unit vector W is the product of the length of X and the cosine of 
the angle between X and W. If this angle (0 - <p) is between 0 and '1T /2, 

x = IXI (C?S 0) 
SinO 

w =(C?S~) 
SIn~ 

Figure 2.10 
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cos (6 - c/I) 
---\ 

Figure 2.11 

then this number IXlcos(O - $) is the length of the adjacent side when the 
hypotenuse is IXI. Thus, if X is a vector which makes an acute angle with 
the unit vector W, then the dot product X . W is the length of the projection 
of X to the line from the origin through W (see Fig. 2.11). 

If the angle between X and W is greater than '1T /2, then cos(O - $) is 
negative and the dot product X . W is a negative number. The projection of 
X to the line from 0 through W will lie on the ray opposite the ray from 0 
through W, and the length of this projection is the absolute value of the dot 
product of X and W. (See Fig. 2.12). In all cases, then, we can say that the 
dot product X . W represents the coordinate of the projection of the vector 
X to the directed line from the origin through the unit vector W. 

In general, if we take the dot product of two nonzero vectors in polar 

form X = IXI(C?SO) and V = IVI(C?S$), we get 
smO sm$ 

X. V = IXI( C?SO) 'IVI( C?S$) = IXIIVI( C?SO) . (C?S$) = IXIIVlcos(O _ ). 
smO sm$ smO sm$ $ 

(17) 

Thus, the dot product of two nonzero vectors is the product of their lengths 
multiplied by the cosine of the angle between them. 

We may use the dot product to calculate the angle between two nonzero 
vectors just by writing 

cos($-O)= X'V = xu+yv (18) 
IXIIVI ~X2 + y2 Ju2 + v2 
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x 

Figure 2.12 

For example, if A = (i), and B = (~), then IAI = 110, IBI = {5, and 

A . B = 5. Thus, 

cos(q, - (J) = 5 
{5 ·110 

=_1 
Ii 

and (J - q, = 7T / 4. 

Exercise 13. Find the angle between G) and (n· 

Exercise 14. Find the angle between n) and ( = ;). 
Similarly, using the trigonometric relation 

sin( q, - (J) = sin q, cos (J - cos q, sin fJ, (19) 

we obtain an expression for sin(q, - (J). Setting X =(;), u =(~), we have 

and 

and so 
(20) 
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u-x 

Figure 2.13 

Note that the sine of the angle from (~) to (;) is the opposite of the sine 

of the angle from (;) to (~). We will return to this formula in Chapter 2.5. 

If we apply this notion of dot product to the difference of two vectors, we 
obtain an important result from trigonometry. We calculate the square of 

the length of the segment from X = IXI( C?s(}(}) to V = IVI( C?S </» (see Fig. 
sm sm</> 

2.13): 

IV - XI2 = (V - X) . (V - X) = V . V - X . V - V . X + X . X 

= IVI2 - 2V . X + IXI2 = IVI2 + IXI2 - 2lVIIXlcos( () - </». (21 ) 

Thus, the square of the length of one side of a triangle is the sum of the 
squares of the lengths of the other two sides minus twice the product of 
those lengths and the cosine of the angle between them. This result is 
known in trigonometry as the law of cosines. 

In particular, if the vectors V and X are perpendicular, so that the angle 
between them is () - </> = 'IT /2, then IV - XI 2 = IVI 2 + IXI 2, so X· V 
= IXIIVlcos«(} - </» = o. We thus have another proof of the result that two 
nonzero vectors are perpendicular if and only if X . V = O. In linear algebra, 
we use the convention that the zero vector is perpendicular to every vector, 
and we frequently use the synonym orthogonal instead of perpendicular. 
We may thus say that two vectors X and V are orthogonal if and only if 
X·V=O. 

We use the notion of dot product to solve some geometric problems 
which will be crucial in our further development of linear algebra: 

(i) To find the projection of a given vector to a given line through the 
origin. 
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(ii) To compute the distance from a given point to the line through the 
origin with equation ax + by = o. 

(iii) To calculate the area of a parallelogram with one vertex at the origin. 
(iv) To give a geometric interpretation of a system of two linear equations 

in two unknowns (where both lines go through the origin). 

(i) We already know that if W is a unit vector, then the dot product of X 
and W represents the coordinate of the projection of the point X to the line 
from the origin through W. We set Pw(X) (read "P sub W of X") equal to 
the vector on this line which is the projection of X to the line. Thus, 
Pw(X) = (X . W)W. 

If V is an arbitrary vector, then we can find a formula for the projection 
Pu(X) of X to the line from the origin along V by using the above formula 
to find the projection of X to the line from the origin through the unit 
vector V/IVI, i.e., 

( V) V (X . V)V (X . V)V 
Pu(X) = X· TUT TUT = IVI 2 = (V· V) (22) 

Hence the length of the projection of X to the line along V is given by 

I V I IX·VI 
X· TUT = lUI (23) 

Alternatively, we may try to find the projection of X to the line along the 
nonzero vector V by finding a scalar t such that X - tV is orthogonal to V. 
(See Fig. 2.14). In terms of the dot product, we obtain 

o = (X - tV) . V = (X . V) - t (V . V), 

u 

Figure 2.14 
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0= p (B) 
u 

Figure 2.15 

A= (J) 

so t = (X . V)/(V· V) and the projection of X to the line along V is 

Pu(X) = tV = ( ~ : ~ )V 

which agrees with formula (22). 
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EXAMPLE 3. To find the projection of B = ( ~) to the line along A = ( i ), we 

have (see Fig. 2.15) 

( A.B) 5 I [~1 P A(B) = A. A A = TO A = "2 A = t . 
To find the projection of B = U) to the line along V = ( ~ 2), we have 

Pu(B) = ( ~ : ~ )V = ( ¥ )v = o. 
(This fits with our intuition that if X is orthogonal to V, the projection of X 
to the line along V will be the origin itself.) 

Exercise 15. Find the projection of ( -; I ) to the line along (;). 

Exercise 16. Find the projection of (;) to the line along (~). 

Exercise 17. Find the projection of (n to the line along ( 62). 

Exercise 18. Find the distance from n) to the line along (D. 



20 Linear Algebra Through Geo~etry 

Figure 2.16 

(ii) Now we want to find the distance d' from a point (;:) to a line L 

with equation ax + by = 0, where a and b are not both ° (see Fig. 2.16). 

The vector U = ( ~ b) is a nonzero vector on this line and the vector 

V = (~) is a non-zero vector perpendicular to this line. The distance from 

X = ( ;:) to the line L is then given by the length of the projection of X to 

the line along V. By (23) we obtain 

I( XyOo)' (:)1 
d'= IX·VI = .!--_~ = 

IVI 1(:)1 
laxo + byol 

~a2 + b2 
(24) 

If (;:) is a point on L, then the expression axo + byo = 0, so by (24), 

d' = 0, as we expected. 

Exercise 19. Find the distance from (~) to the line y = 2x. 

Exercise 20. Verify that the sum of the squares of the distances from a point X to 
the perpendicular lines ax + by = 0 and bx - ay = 0 is equal to the square of the 
length of X. 

(iii) Once we have the formula for the distance from a point to the line 
along a given vector, it is an easy matter to find a formula for the area of a 
parallelogram with one vertex at the origin. If the other three vertices are 

A =(~), B =(:), and A + B =(~! :), then the distance from A to the 
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Figure 2.17 

line along B is given by formula (24) by the expression 

lad - bel 

~b2 + d 2 
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Multiplying this distance by the length ~b2 + d 2 of the base B, we get 
the formula 

lad - bel = area of the parallelogram with sides (~) and (~). 
(See Figure 2.17.) 

(iv) Let us try to solve the system of equations 

2x + 3y = 0, 
4x - Y =0 

for the unknowns x and y. 

(25) 

(26) 

Suppose x, y is a solution. We define the vector X = (~). The first 

equation then says that X· ( ; ) = 0 and the second that X· ( _41 ) = O. 

Thus, the vector X is orthogonal to both the vectors (;) and ( _41 ). This is 

possible only if X = O. 

Hence, (~) = (~), so the only solution to (26) is x = 0, y = O. 

Now look at the general case of a system 

ax + by = 0, 
ex + dy = 0, 

(27) 

where a, b, e, d are given constants such that not both a and b are zero and 
not both e and d are zero. 

Of course, x = 0, y = 0 is a solution of (27). Are there others, and if so 
what are they? 
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Figure 2.18 

Let x, y be a solution other than 0, O. Set X = (~). Then X*-O and 

X . (~) = 0 and X· (~) = O. 

Thus, there is a nonzero vector orthogonal to both vectors (~) and (~). 

(See Fig. 2.18.) This can only happen where (~) and (~) lie on the same 

line through the origin. Since (~) *- 0, there is some scalar t with 

(:) = t(~), and so a = te and b = td. Also t *- O. Every vector X on the 

line perpendicular to (:) is then orthogonal to both (:) and (~). Our 

result is this: 
(27) has a solution other than x = 0, y = 0 only when there is some scalar 

t such that 
a = te, b = td. 

In that case, there is a line consisting of solutions x, y, namely the line 

orthogonal to (~). 

Exercise 21. Find all solutions to the system of equations 

3x + 2y = 0, 

4x - Y = O. 

Exercise 22. Find all solutions to the system of equations 

5x + y = 0, 
- lOx - 2y = O. 
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Transformations of the Plane 

Recall the notion of a "function." A function is a rule which assigns to each 
number some number. This suggests the following definition: A transforma­
tion of the plane is a rule which assigns to each vector in the plane some 
vector in the plane. 

We denote transformation by letters A, B, R, S, T, etc. 

EXAMPLE 1. Let P be the transformation which assigns to each vector X the 

projection of X on the line along the vector V = (~). 
We write P(X) for the vector which P assigns to X and we call P(X) the 

image of X (see Fig. 2.19). 

Let X = ( ~) and let us calculate P(X). By formula (22) of Chapter 2.0, 

1 
P(X) = ( X· V )V = x + 2y = 

V·V 1+42 

x + 2y 
-5-

~(x+2y) 
(1) 

EXAMPLE 2. Let S be the transformation which assigns to each vector X the 

reflection of X in the line along the vector (~). 

Given X = (~), we want to find the coordinates of the point S(X) such 

that the midpoint of the segment from X to S(X) is the projection of X to 

the line along V = U). Denote the coordinates of S(X) by x', y'. Then 
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y 

x 

Z = P(Z) 

Figure 2.19 

!eX + S(X)) = P(X), where P was defined in the preceding example. So, 

X + S(X) = 2P(X) 

and 

S(X) = 2P(X) - X. 

From formula (1), we then obtain 

S(X) = X' = 2 x ~ 2y 1- [x 
I 2(x + 2y) 

Y 5 Y 

(x + 2y) 
2 -x 

5 
= 

(x + 2y) 
4 5 -y 

Thus 

( xl)=(-~x+ty). 
y' tx + ~y 

For example, if X =( 100)' then S(X) =(;:) =(!). 
Exercise 1. In each of the following problems, U is a nonzero vector and P denotes 
the transformation which projects each vector X to the line along U. Let X = ( ~ ) 
and P(X) = (;:). and calculate x' and y' in terms of x and y. 
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(a) U = (~), 

(b) U =(~), 

(c) U = ( _I I)' 

(d)U=n)· 
In each case draw a diagram and indicate several vectors and their images. 
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Exercise 2. Consider the line 5x - 2y = 0 and let P denote projection on this line. 

If (~) is a given vector and (~:) = p( ~), express a' and b' in terms of a and b. 

Exercise 3. For each of the vectors U in Exercise I, let S(X) = (~:) denote the 

reflection of (; ) in the line along U. Calculate the coordinates x' and y' in terms of 

x andy. In each case draw a diagram and indicate several vectors and their images. 

Exercise 4. Let L be the line 5x - 2y = 0, and let S denote reflection in L. If (~) is 

a given vector and (~:) = S(~). express a' and b' in terms of a and b. 

EXAMPLE 3. Let D2 be the transformation which sends each vector into 
twice itself: 

D2(X) = 2X. 

If x = (;) and DiX) = (~), let us calculate x' and y'. 

So 

( ;: ) = D2(X) = 2X = 2( ; ) = (~;). 

{
Xi = 2x 
y' = 2y~ (2) 

An obvious generalization of this example consists in replacing the 
number 2 by the number r and defining the transformation Dr by Dr(X) 

= rX. For X = (;), Dr(X) = (;:), then, we find that x' = rx, y' = ry. We 

call Dr the transformation of stretching by r. 
Fix a scalar () with 0 <:; () <:; 2'17. We define the transformation Ro of 

rotation by () radians as follows (see Fig. 2.20): Let X be a vector. Rotate the 
segment from 0 to X around 0 counterclockwise through an angle of () 
radians. The endpoint of the new segment is R8(X), 

EXAMPLE 4. Let X = (;) and set (;:) = R",dX). Find x', y'. (See Fig. 

2.21.) By rotating the triangle with vertices (g), (;), (~) through a right 
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o 

Figure 2.20 

angle at the origin, we see that 

x'= -y, y'=x. 

Exercise S. Let X = (;). Calculate 

(a) RJw/ 2(X), 
(b) R,,(X), 
(c) R2w (X), 
(d) R,,/4(X), 

Figure 2.21 

x =(;) 
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Figure 2.22 

, , Icos ('" + 0) \ 
RlX) = X \ sin(", + 0)/ 

/ ( COS </J) X =/X sin", 

You may have found part (d) of Exercise 5 a bit difficult. Here is a 
method that lets us calculate Ro(X) for any 0: 

Set X = (~) and (;:) = Ro(X). We can write X and Ro(X) in the form 

X = IXI( :~::), Ro(X) = IRo(X)I( ::::), 

where cp is the polar angle of X, and cp' is the polar angle of Ro(X). Then 
cp' = cp + 0 and IRo(X)1 = IXI. (See Fig. 2.22.) So 

Now 

So 

or 

Ro (X) = IXI = IXI ( cos( cp + 0») ( cos cp cos 0 - sin cp sin 0) 
sine cp + 0) sin cp cos 0 + cos cp sin 0 

= (IXICOSCPcoso -IXlsincpsinO) 
IXlsin cp cos 0 + IXlcos cp sin 0 . 

IXlcos cp = x, IXlsin cp = y. 

(x:) = Ro (X) = ( x cos 0 - y s~n 0 ), 
y y cos 0 + x sm 0 

{
X' = (cosO)x - (sinO)y, 

y' = (sinO)x + (cosO)y. 
(3) 

Exercise 6. Interpret the results you obtained for Exercise 5 as corollaries of 
formula (3), by giving () suitable values. 
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y=o 

Figure 2.23 

EXAMPLE 5. Let To be the following transformation: To sends every horizon­

tal line y = c into the parabola y = x2 + c by sending (;) into (x 2: y). 

(See Fig. 2.23.) In other words, if X = (;) and (;:) = X' = To(X), then 

{
X' = x 
y' = ;2+ y. 

(4) 

Let S, T be two transformations. When do we say that they are equal, 
i.e., S = T? Recall that two functions j, g were called equal if j(x) = g(x) 
for every number x. In a similar spirit, we say S = T provided 

S(X) = T(X) for every vector X. 

EXAMPLE 6. The transformation R -'11/2' which rotates each vector clockwise 
by .,,/2 radians, and the transformation R 3'11/2' which rotates each vector 
counterclockwise by 3.,,/2 radians, are equal, i.e., 

R-'1I/2 = R 3'11/2· 



CHAPTER 2.2 

Linear Transformations and Matrices 

In Chapter 2.1, we looked at a number of transformations of the plane. Let 
us list the results we obtained for each transformation T, giving x', y' in 

terms of x, y, where (;:) = T(;). 

(i) P = projection to the line along (;). 

I x +2y 
x =-5-' 

,_ 2(x + 2y) 
y - 5 . 

(ii) S is reflection about the line along (~). 

(iii) Dr is stretching by r. 

,_ 3 + 4 
x - - SX S y, 

I 4 + 3 Y = SX S y. 

x' = rx, 
y'=ry. 

(iv) RIJ is rotation by 0 radians. 

x' = (cosO)x - (sinO)y, 

y' = (sinO)x + (cosO)y. 
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(v) To is the transformation of Example 5. 

x'= x, 

y' = X 2 + y. 

Can we describe some single general type of transformation, expressing 
x' and y' each in terms of x and y, which includes the above examples as 
special cases? 

Let a, b, e, d be scalars. Denote by A the transformation which sends 

each vector X = (;) into the vector X' = (~:), where 

{ X'=aX+bY , (I) 
y' = ex + dy. 

Setting a = !, b = ~, e = ~, d = ~, we re-obtain example (i) above. Setting 
a = - t, b = ~, e = ~, d = t, we get (ii). Setting a = r, b = 0, e = 0, d = r, 
we get (iii). If we take a = cos B, b = - sin B, e = sin B, d = cos B, we obtain 
(iv). However, no choice of a, b, e, d will give us (v). 

A transformation A given by a system (I) is called a linear transformation 
of the plane and the symbol 

is called the matrix of A, denoted m(A). The plural of "matrix" is 
"matrices." Reflection through a line and projection to a line are linear 
transformations, provided the line goes through the origin. Stretchings Dr 
and rotations are also linear transformations. It is not possible to describe 
aI/linear transformations in simple geometrical terms. However, Equations 
(I) provide a simple algebraic description. 

Let us list the matrices of the linear transformations (i)-(iv) considered 
above. 

(i) m(p)=(t ! ), 
(ii) 

( _ 3 
m(S)= ~5 ; ), 

(iii) m(Dr)=(~ ~), 

(iv) m ( Ro ) = ( C?s B 
smB 

- sin B), 
cosB 

(v) To is not a linear transformation. 

We need the linear transformation which is the analogue of the function 
f(x) = x. That function sends every number into itself. The identity transfor­
mation, denoted I, sends every vector into itself: 

I (X) = X, for every vector X. 
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Since I sends X = (;) into I(X) = (;), the system 

x'=x, 
y'=y 

describes I. Thus the matrix of I is 

(vi) m(l)=(6 ~). 
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Finally, we need the linear transformation zero, denoted 0, which sends 
every vector into the zero vector: 

O(X) = 0, 

Evidently, the matrix of 0 is 

for all X. 

(vii) m(O) = (g g). 
Next we introduce some useful notation. Let A be the linear transforma­

tion with matrix (f n and let X = (;) be a vector. We shall write 

For instance, if D is stretching by 2, then 

or if P is projection on the line along (~), then 

( t t)(x)=p(x)=(tx+ty). 
2. i y Y 2. x + i y 5 5 5 5 

Let A have the matrix (f ~), X = (;) and A (X) = (~:). Then 

By definition (2), 

and so 

x' = px + qy, 
y' = rx + sy. 

(p q)(X)_(px+qy) r s y - rx + sy . 
Formula (3) is basic. We interpret (3) as saying that the matrix ( f 
on the vector (;) to yield the vector ( ~: : if). 

(2) 

(3) 

n acts 
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EXAMPLE 1. 

(5 6)(X)=(5X+6y), 
7 8 Y 7x + 8y 

(~ ~)(!)=C!), 

G ~)( ~) = (2X ~ 2Y)' 

(~ ~)(~) = (~). 

Let A be an arbitrary linear transformation. We claim that A sends the 
origin into the origin, i.e., 

A (0) = 0, 

for if (~ ~) is the matrix of A, then 

A(O)=(~ ~)(~)=(~)=O. 
A basic reason why linear transformations are interesting is that a linear 

transformation acts in a simple way on the sum of two vectors. Let A be the 

linear transformation with matrix (~ ~) and let X = ( ; ), X = ( ;) be two 

vectors. 

A X+X =A = _ (x+x) (a b)(X+X) ( ) y+y e d y+y 
= (a(x + x) + bey + y») = ((ax + by) + (ax + bY») 

e(x + x) + dey + y) (ex + dy) + (eX + dJi) 

b)(X) -d Y = A(X) + A (X). 

Thus, we have found 

A(X + X) = A (X) + A (X) 

for every pair of vectors X, X. 
A similar calculation shows 

A (IX) = IA (X), 

if X is a vector and I is a scalar. 

Exercise 1. Verify that formula (5) is true. 

(4) 

(5) 
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Conversely, let B be a transformation of the plane. Let us not assume 
that B is linear, but instead let us suppose that (4) and (5) are valid for B, 
i.e., suppose 

B(X + X) = B(X) + B(X), B(tX) = tB(X), (6) 

whenever X and X are vectors and t is a scalar. We claim that it follows 
that B is a linear transformation, i.e., B is given by a system (1) for suitable 
a, b, c, d. 

To see this, set E) = (~) and E2 = (~). Then an arbitrary vector X = (;) 

can be expressed as 

X = xE) + yE2' 

Set B(X) = (;:). By hypothesis, 

B(X) = B(xE) + B(yE2) = xB(E J) + yB(E2)' 

B(E) can be written 

B(E) = (~), 

and similarly B(E2) =(~). Thus 

So 

(X') = B(X) = x(u) + (w) = (ux + wy). 
y' v y z vx + zy 

x' = ux + wy, 
y' = vx + zy. 

Thus, x', y' have the form of Eq. (1) of this chapter. Hence B is a linear 

transformation, by definition. The matrix of B is (~ ~). Thus we have 

proved that if B is a transformation satisfying (6), then B is a linear 
transformation. Summing up, we have shown: 

Theorem 2.1. Let A be a transformation of the plane. Then A is a linear 
transformation if and only if for every pair of vectors X and X and every 
scalar t: 

A(X + X) = A(X) + A(X), (7a) 
and 

A (tX) = tA (X). (7b) 

Note: (7a) and (7b) together imply 

A (tX + sX) = tA (X) + sA (X) (8) 
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for every pair of scalars t, s and every pair of vectors X, X. This is so, since 
by (7a), 

A (tX + sX) = A (tX) + A (sX), 

while by (7b), A (tX) = tA (X) and A (sX) = sA (X). On the other hand, (8) 
clearly implies both (7a) and (7b). Thus, in Theorem 2.1, we may replace 
the two conditions (7a) and (7b) by the single condition (8). From now on, 
when presented with a transformation T, if we wish to show that T is a 
linear transformation, we can do either of the following: Show that T 
satisfies (7a) and (7b) (or, equivalently, (8», or show that there is some 

matrix (~ ~) such that for every vector X = ( ;), the vector T(X) = ( ;: ) 

is given by: 

X' = ax + by, 

y' = ex + dy. 

If A is the linear transformation with matrix (~ ~), then A (E I ) 

=(~ ~)(6) =(~) and A(E2)=(~ ~)(~) =(~). Thus we can de-

scribe the matrix of A by saying that its first column is the image of the first 
basis vector EI and the second column is the image of E2 • 

EXAMPLE 2. Let P denote projection on the line along U = ( ~), so 

P(X) =( ~:~)u. Then 

uv 

Thus the matrix of P is given by 

u2 vu 

m(P) = u2 + v 2 u2 + v 2 
(9) 

uv v2 

u2 + v 2 u2 + v 2 
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For example if V is the unit vector V = (c?s{}), then u2 + v 2 = I, so , sm{} 

m ( P ) = (COS2{) sin {} cos (}). ( 10) 
cos {} sin {} sin 2{} 

Theorem 2.1 allows us to give a simple solution of the following geomet­
ric problem: Let A be a linear transformation and let L be a straight line. 
By the image of L under A we mean the collection of all vectors A (X) when 
X is a vector whose endpoint lies on L. We denote this image by A (L). 

EXAMPLE 3. The image of the x-axis under the transformation R",/2' which 
is rotation by 'IT /2 radians, is the y-axis. 

What kind of geometric object does the image of L under A turn out to 
be? The answer is given by: 

Theorem 2.2. Let A be a linear transformation and let L be a straight line. 
Then the image of L under A is either a straight line or a single point. 

PROOF. Remember from Chapter 2.0 that we can choose vectors Xo and V 
in such a way that L is described by 

X = Xo + tV, t a real scalar. 

Thus, for each X on L, 

X=Xo + tV. 

Hence, by (7a) and (7b), 

A (X) = A (Xo + tV) = A (Xo) + tA (V). 

If A (V) =1= 0, then as X runs through all vectors with endpoint on L, A (X) 
runs through the collection of points 

A (Xo) + tA (V), t real. 

This is a straight line, and so the image of L under A is this line. (See Fig. 
2.24.) If A (V) = 0, then A (X) = A (Xo) for each X with endpoint on L. So 
the image of L under A is the single point A (Xo)' 

EXAMPLE 4. Let A denote reflection in the x-axis and let L be the line along 

(~). Find the image of Lunder A. The point (;t) has image (_t2J so 

the line along ( ~ 2) is the image of L under A. (See Fig. 2.25.) 

EXAMPLE 5. Let P denote projection on the y-axis and let L be the x-axis. 
Find the image of Lunder P. (See Fig. 2.26.) If X lies on L, then P(X) = O. 
Hence, the image of Lunder P is a single point, the origin. 
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u 

A(L) 
Figure 2.24 

Exercise 2. For each of the following transformation T calculate the image of the 
x-axis. 

(a) T is rotation by 45°. 
(b) T is reflection in the line y = 2x. 
(c) T is projection on the line y = x. 

Figure 2.25 
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P(X) = 0 

Figure 2.26 

Exercise 3. A is the transformation with matrix (_ ~ ~). 

(a) Find the image of the line along (n under A. 

(b) Find the image of the line along (~) under A. 

37 

L 

x 

Exercise 4. Let B be a linear transformation such that whenever X is a nonzero 
vector, then B(X) =F O. Show that for every straight line L through the origin, the 
image of Lunder B is a straight line through the origin. 

If X is a nonzero vector then the set of vectors {rX I 0 " r " I} is the 
segment from 0 to the point X. If X = 0, then the collection {rX I 0 " r " I} 
contains only the zero vector, and in this case we say that the segment 
degenerates to a pOint. 

If T is any linear transformation, then T(rX) = rT(X), so the image of 
the segment {rXIO" r" I} is the segment {r(T(X» 10 " r" I}, possibly 
degenerate if T(X) = O. 

The set of points {U + rX I 0 " r " I} is also a segment, from U to 
U+X. 

If X and U are linearly independent vectors, then the set of vectors 
{rX + sU 10 " r " 1, 0 " s " I} describes the parallelogram determined by 
X and U (see Fig. 2.27). The sets {rX 10" r" I} and {sU 10" s " I} 
form two edges of the parallelogram and the other two edges are {rX + 
U I 0 " r " I} and {X + sU I 0" s " I}. The four corners of the parallelo­
gram are, in order: U, 0, X, U + X. 

If X and U are linearly dependent, but not both 0, then the four points 
U, 0, X, and U + X all lie on the same line and the set {rX + sUIO" r" 1, 
o " s " I} is then a degenerate or collapsed parallelogram. 
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u+x 

Figure 2.27 

If X and U are both 0, then {rX + sU I 0 .;;; r, s .;;; I} is also just the point 
0, so the parallelogram degenerates to a single point. 

If T is a linear transformation, then T(rX + sU) = rT(X) + sT(U), so the 
image of the parallelogram II = {rX + sU I 0 .;;; r, s .;;; I} is the parallelo­
gram T(II)={rT(X)+sT(U)IO';;;r';;; I, O';;;s';;; I}. Even if X,U is a 
linearly independent pair, the parallelogram T(II) might be degenerate. 

Exercise 5. Describe the parallelograms determined by the following pairs of 
vectors: 

(a) (i), ( : ), 
(b) (~), (i), 
(c) (n, (=~), 
(d) (~), (n, 
(e) (~), (~). 
Exercise 6. Describe the images of each of the preceding parallelograms under the 
projection to the first coordinate axis: 

( -I -42). Exercise 7. Do the same for the linear transformation with matrix 2 
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Products of Linear Transformations 

Let A and B be two linear transformations. We define the transformation C 
which consists of A followed by B, i.e., if X is any vector 

C(X) = B(A (X»). 

We write C = BA and we call C the product B times A. 
Associating to A and B their product BA is in some ways analogous to 

multiplying two numbers, and we shall pursue this analogy later on. 

EXAMPLE 1. B is reflection in the x-axis and A is reflection in the y-axis (see 
Fig. 2.28). Find BA. 

Choose X = (~). Then 

A(X) = (-;) and B(A(X») = C=;). 
So 

(BA)(X) = (=;) = -X. 

Thus, BA sends each vector into its negative. In other words, BA = R"" 
rotation by 7T radians. 

Exercise 1. Show that if S, T are linear transformations, then ST and TS are linear 
transformations. (Use (7a) and (7b) or (8) in Chapter 2.2.) 

Exercise 2. Let A, B have the same meaning as in Example 1. Show that AB = R". 

EXAMPLE 2. Let P be projection on the x-axis and Q projection on the 
y-axis. Find QP. (See Fig. 2.29.) 

If X = (~), then P(X) = (~) and so (QP)(X) = Q(P(X» = Q(~) = (~). 
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A(X) 
'----------------+---------------4 X 

BA(X) 

Figure 2.28 

Thus QP is the transformation which sends every vector into the origin, i.e., 
QP=O. 

EXAMPLE 3. Let A be a linear transformation and let I denote the identity 
transformation. Let us find AI and IA. 

Fix a vector X 
(AI)(X) = A (I (X)) = A (X) 

and 
(lA)(X) = I(A(X)) = A(X). 

Hence, 
AI=A and IA =A. (I) 

x 

pry) QP(Y) 

QP(X) P(X) 

Y 

Figure 2.29 



2.3 Products of Linear Transformations 41 

Note: The number I has the property that 

al = la = a 
for every number a. In view of (1), the identity transformation I plays the 
same role in multiplying linear transformations as the number I does in 
mUltiplying numbers. 

Exercise 3. Let P be projection on the x-axis and let /{,,/2 be rotation by '1T /2 
radians. 

(a) Calculate PR.,,/2' 
(b) Calculate (/{,,/2)P, 

Observe that your answers for (a) and (b) in Exercise 3 are different. 
Thus PR.,,/2 =1= R.,,/2P, The commutative law of multiplication, i.e., the law 
that ab = ba, which is valid for every pair of numbers a, b is false for the 
product of linear transformations. That is, if A, B are linear transforma­
tions, then sometimes AB = BA and sometimes AB =1= BA. If AB = BA, we 
say that A and B commute. For instance, if A is any linear transformation 
and I is the identity, then A and I commute. 

Now suppose that A and B are two linear transformations having 

matrices (~ :) and (: ~), respectively. What is the matrix of the 

transformation AB? 

Let X =( ~). Then 

So 

[a b] [ax + bY] AB(X)=A(B (X»= __ 
c d cx + dy 

= [a(ax + ~) + b(ex + ~)] 
c(ax + by) + d(ex + dy) 

= [(aa +bc)x + (a~ +b~)Y] 
( ea + de)x + (cb + dd )y 

= [aa + be a~ + b~] [x]. 
ca + de cb + dd Y 
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So the matrix of AB is 

( ali+be a~+b~). (2) 
cli + de cb + dd 

We define the product of matrices m(A) and m(B) to be the matrix 
m(AB) of AB. Thus 

m(A)m(B) = m(AB). (3) 

In other words, 

( ac b ) ( a ~) = (aa + be a~ + b~). 
d e d cli + de cb + dd 

(4 ) 

Note that on the right-hand side of (4), the upper left-hand entry is the dot 
product 

the upper right-hand entry is 

the lower left-hand entry is 

and the lower right-hand entry is 

(~) . (~). 

EXAMPLE 4. Find the product (1 0)( 5 4). By formula (4), 
2 3 - I 7 

( I 0)( 5 4)_(1.5+0'-1 1.4+0.7)_(5 4) 
2 3 - I 7 - 2· 5 + 3 . - 1 2· 4 + 3 . 7 - 7 29 . 

Exercise 4. In each case, calculate the indicated product of two matrices: 

(-I 0)( -I 0) 
(a) 0 0 0 0 ' 

(b) (g 6)(g 6)' 
(c) (~ ~)(~ ~). 

Exercise 5. Let U be the linear transformation having matrix (~ 6)' 
(a) Interpret U geometrically. 
(b) Show that UU = I. 



2.3 Products of Linear Transformations 

Exercise 6. Let V be the linear transformation having matrix (~ 
VV = Ru, rotation by 'IT radians. 

43 

-6)' Show that 

Exercise 7. Let Ro and Rq, be rotation by angles of 8 radians and Q radians, 
"respectively. Show that 

rotation by 8 + I/> radians. 

Exercise 8. Exhibit a linear transformation N such that N =F 0, while NN = O. 

I· f" h . (I - I ) Exercise 9. Let A be the mear trans ormatIOn Wit matrIX 2 _ 2 . 

(a) Show that if X is any vector which lies on the line along ( : ), then A (X) = O. 

(b) Show that if X is any vector, then A(X) lies on the line along U)· 
(c) Find a linear transformation B with B =F 0 such that BA = O. 
(d) Find a linear transformation C with C =F 0 such that AC = O. 

If a,h,c are three numbers, then the associative law holds, i.e., (ab)c 
= a(bc). 

If A, B, C are three linear transformations, then 

(AB)C = A (BC), (5a) 

and 

(m(A)m(B»)m(C) = m(A)(m(B)m(C»). (5b) 

Note: (5a) says that the associative law holds for multiplication of linear 
transformations, while (5b) says that it holds for multiplication of matrices. 

PROOF OF (5a): Let X be any vector. Then 

«AB )C)(X) = AB( C(X») = A (B( C(X»)) 

= A «BC)(X)) = (A (BC»)(X). 

Hence 

(AB)C = A(BC). 

So (Sa) holds. 

PROOF OF (5b): By definition of multiplication of matrices, if Sand Tare 
linear transformation, then m(S)m(T) = m(ST). Hence, using (5a), we get 

(m(A)m(B »m(C) = m(AB )m(C) 

= m«AB)C) = m(A(BC») 

= m(A)m(BC) = m(A)(m(B)m(C»). 

Thus (5b) holds. 
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Note: If (~ ~), (~ ~), and (~ n are three matrices, (5b) yields 

We could obtain this equation directly, using formula (4), but that would 
require more effort. 

Let A and B be two linear transformations. By the sum of A and B, 
A + B, we mean the transformation which assigns to each vector X the 
vector A (X) + B (X) so 

(A + B )(X) = A (X) + B(X), for each X. 

If the matrix meA) =(~ ~) and the matrix m(B) =(: ~). then 

(A + B)[(~)] = A(~) + B(~) = (~ ~)(~) + (: ~)(~) 

= (ax + bY) + (ax +?) = [(a + a)x + (b + ~)Yl 
cx + dy ex + dy (c + e)x + (d + d )y 

=(a+a b+~)(X). 
c+e d+d y 

Thus, A + B is a linear transformation and its matrix is (a + ~ b + ~). 
c+d d+d 

We define the sum of the matrices meA) and m(B), denoted m(A) + m(B), 
as meA + B). Thus 

(: ~)+(: ~)=(::: ~:~). 
Similarly, if A is as above and is a scalar, we denote by tA the 

transformation defined by 

(tA )(X) = tA (X), for every vector X, 

and we define 

tm(A) = m(tA). 

It follows that 

t (a b) = (ta tb). 
c d tc td 

EXAMPLE 5. 

(: !) + f ~ n = c + 23( - 1) 4+ 22( 1)) = ( -: ~ ). 
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As an application of the notion of the sum of two linear transformations, 
let us do the following example. 

EXAMPLE 6. Let L be a straight line through the origin and denote by S the 
transformation which reflects each vector in X. Let P denote the transfor­
mation of projection to L. If X is any vector, then HX + SeX»~ = P(X). 
Hence 

X + S(X) = 2P(X), 

and so 
S(X) = 2P(X) - X = (2P - I)(X). 

Since this holds for every vector X, we get 

S = 2P - I. (6) 

EXAMPLE 7. Let L be a straight line through the origin and denote by () the 
angle from the positive x-axis to L. Find the matrix of the transformation S 

which reflects each vector in L. (See Fig. 2.30.) The vector U = ( C?s ()) is a 
sm(} 

unit vector and lies on L. By (10) of Chapter 2.2, if P is the transformation 
which projects to L, then 

m ( P) = ( cos2 f) sin f} cos f} ) . 
cos () sin () sin2 () 

By Example 6, S = 2P - I, so 

m(S) = 2m(P) - m(I) = ( 2cos2 () 
2 cos () sin f} 

2 cos () sin f}) _ (1 0
1 

) 
2sin2 f} 0 

= (2 cos2 f) - 1 2 cos () sin f} ) . 
2cosf}sin(} 2sin2 f} - 1 

y = SlY) 

Figure 2.30 

L 
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By the double-angle formulae from trigonometry, we have 

So 

Exercise 10. 

cos2{} = 2cos2{} - I, sin2{} = 2 sin{}cos{}. 

sin 2{} ) 
-cos2{} . 

(a) Using (7) show that (m(S»2 = m(J). 

(b) Give a geometric explanation of the result of part (a). 

(7) 

Exercise 11. Using formula (7), find the matrix of the transformation which reflects 

each vector in the line along (~). 

Exercise 12. Let Hk be the transformation with matrix (~ ~). Show 

U n(~ n -(k 1 m n, and conclude that HkHm = Hk+ m· 

Exercise 13. Let h be the transformation with matrix (~ ~). Show that JkJm 

= Jk + m · 

Exercise 14. Conclude HkJm and JmHk for a given pair of scalars k,m. 

Exercise 15. Describe the images of the unit square under the transformations 
HI>H2 ,H -I' 

Exercise 16. Describe the images of the unit square under the transformations 
J 1,J2 ,J_I' 

Note: The transformations Hk and Jm are called shear transformations. 
The transformation K with matrix 

m(K)=(~ 6) 
is called a permutation and its matrix is called a permutation matrix. 

Exercise 17. Let (~ ~) be a matrix. Show that 

and 

(~ ~)(~ ~) = (~ ~). 

Note that multiplying a matrix on the left by a permutation matrix 
interchanges the rows, while the corresponding multiplication on the right 
interchanges the columns. 
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Permutation matrices and shear matrices, as well as the identity matrix, 
are called elementary matrices. A matrix 

(~l ~J 
with entries 0 except on the diagonal is called a diagonal matrix. 

Theorem 2.3. Let (~ ~) be an arbitrary matrix. We can find elementary 

matrices el' e2, e3, e4 and a diagonal matrix (~l ~J, such that 

(8) 

PROOF. Suppose a =1= O. We have 

( i ~ ) ( ~ ~) - (ka ~ c kb: d)' 
Taking k = - cl a, we get 

u ~)(~ ~) = (~ ~), 
where x = -(cla)b + d. Also, 

(~ ~)(6 7)=(~ max+b). 

Taking m = - bl a, we get 

Thus we have 

( I O)(a b)(1 m)=(a 0) 
k 1 c dOlO x' 

and so (8) holds. 

What if a = O? Either (~ ~) is the zero matrix, or some entry IS 

nonzero, say c =1= O. Then 

Since c =1= 0, the preceding reasoning applies to (~ ~) and we can 

choose shear matrices e1 and e3 such that 

el(~ ~)e3 = ele2(~ ~)e3 



48 Linear Algebra Through Geometry 

is a diagonal matrix, where e2 = (~ ~). So again (8) holds. If b::f:. 0 or 

d ::f:. 0, we proceed in a similar way to obtain (8). 

EXAMPLE 8. Let us find formula (8) for the matrix (~ ; ). 

( 0 1)(0 5) = (2 3) 
1023 OS' 

(~ ~)(~ ~)(~ -n = (~ ~)(~ - n = (~ ~). 
Thus (~ ~) is the diagonal matrix of formula (8) here. 

Exercise 18. Find elementary matrices el and eJ and a diagonal matrix (~I ~J 
such that 

el(~ ~)e2 = (~I ~J 
Figures 2.31a-f indicate the effects of elementary transformations and 

diagonal matrices. Figure 2.31a shows the identity transformation I. Fig­
ure 2.31b shows the matrix with diagonal entries 2 and 1, Figure 2.31c 
shows the shear transformation H 2 , Figure 2.31d shows the permutation 
matrix K, Figure 2.31e shows the shear J2 , and Figure 2.31f shows the 
diagonal matrix with entries 1 and 2. 
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(a) 

o 
(d) 

Figure 2.31 



CHAPTER 2.4 

Inverses and Systems of Equations 

§ 1 Inverses 

If a, x, yare numbers, then 

a(x + y) = ax + ay. 

If A is a linear transformation and X and Yare vectors, then by Theorem 
2.1 of Chapter 2.2, 

A(X + Y) = A(X) + A(Y). 

Thus we see that the operation which takes a number x into the number ax 
is somehow similar to the operation which takes a vector X into the vector 
A (X), where A is a linear transformation. 

Next, consider the equation: 

ax=y (I) 

where a and yare given numbers, a "1= 0, and x is an unknown number. We 
solve (l) by taking the reciprocal 1/ a of a, and multiplying both sides by it, 
arriving at 

I( ) I -d 1 - ax = - y, an so x = - y. 
a a a 

As an analogue of equation (I) for vectors, we may consider a linear 
transformation A and a vector Y and look for a vector X such that 

A(X) = Y. (2) 

To solve (2) we should like to have an analogue of the reciprocal for the 
transformation A. Now the reciprocal 1/ a satisfies 

1 . a = I and a' 1 = 1. 
a a 



2.4 Inverses and Systems of Equations 51 

A reasonable analogue would be a linear transformation B such that 

BA = I and AB = I. (3) 

Suppose we have found such a B. Then we can solve Eq. (2) by applying B 
to both sides. This gives 

B(A (X») = B(Y). 

But 

B(A (X») = (BA)(X) = I(X) = X, 

so we get 

X = B(Y). (4) 

We can verify that (4) really gives a solution to (2) by applying A to both 
sides of (4). This gives 

A(X) = A(B(Y» = (AB)(Y) = I(Y) = Y, 

and so (2) is valid. 
The problem of solving Eq. (2) will thus be resolved, provided we can 

find a linear transformation B satisfying BA = I and AB = I. Such a linear 
transformation B is called an inverse of A. 

Note tltat there is exactly one number which fails to have a reciprocal, 
namely the number O. It turns out that there are many linear transforma­
tions which have no inverse, and later on in this chapter we shall see how 
we can decide whether or not a given linear transformation has an inverse. 

Let A be a linear transformation. If B is an inverse of A, then B undoes 
the effect of A on a vector in the following sense: if A sends the vector X to 
the vector Y, then B sends the vector Y to the vector X. 

To see that this is so, consider a vector X. Define Y = A (X). By (3), 

(BA)(X) = I(X) or B(A (X» = X. 

So B(Y) = X, as we have claimed (see Fig. 2.32). 

EXAMPLE 1. Fix r #- O. Find the inverse of Dr' i.e., of stretching by r, where 
Dr takes the vector X into the vector rX. To undo this, we must multiply 
by the scalar l/r. Thus, we set B = D 1/ r • Then if X is any vector, 

(BDr )(X) = B(Dr(X» = B(rX) = 1 (rX) = x. 
r 

Hence, BDr = I. Also, 

(DrB)(X) = Dr(B(X») = Dr( ~x) = r( ~x) = X, 

Thus, B satisfies (3) and so DI/r = B is an inverse of D. 

EXAMPLE 2. Rg denotes rotation by 0 radians. Find the inverse of R",/2' 

Let X be a vector. R",/2 rotates X by 'IT /2 radians counterclockwise 
around O. To undo the effect of R",/2' we can rotate by - 'IT /2 radians. 
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A(X) = Y 

Figure 2.32 

Thus, we set B = R-7</2. If we prefer, we can write B = RJ7</2' since 
rotation by - 7T /2 radians and rotation by 37T /2 radians have the same 
effect on each vector, and so R_ fT / 2 = R3fT/2 • Then, if X is a vector, 

(BRfT/2)(X) = B(R"/2(X») = R_,,/2(R,,/2(X») = X. 

Thus, BR,,/2 = I. Also, 

(~/2B)(X) = R71/2(B(X») = R"/2(R_71/2(X») = X. 

Thus, ~/2B = I. So B satisfies (3), and R-fT/2 = B is an inverse of ~/2' 

Exercise 1. Find an inverse of R31</4. 

EXAMPLE 3. Let L be a straight line through the origin. Let S be reflection 
in the line L. Find an inverse to S (see Fig. 2.33). 

L 

x = SlY) = SS(X) 

Figure 2.33 
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If we start with a vector X, then reflect X in L and then reflect in L 
again, we return to X. In other words, 

S(S(X» = X or (SS)(X) = X. 

Thus, SS = I. Hence, if we take A = Sand B = S, then (3) is satisfied. So 
S is an inverse of itself. 

Note: For numbers, the analogous situation occurs when a number a is 
its own reciprocal, as in case a = 1 or a = - 1. 

Now let A be an arbitrary linear transformation. Can A have more than 
one inverse? Assume that Band C are two linear transformations each of 
which satisfies (3), i.e., assume 

AB = I and BA = I (5) 

and, also, 

AC = I and CA = I. 

By (5), BA = I. 
Hence, (BA)C = IC = C. 
By the associative property, (BA)C = B(AC). So 

B(AC) = C. 

By (6), AC = I, so B(AC) = BI = B. Hence, 

B=C. 

(6) 

We have seen, then, that if Band C each is an inverse of A, then B = C. 
In other words, A can have only one inverse. Thus we can speak of the 
inverse of A, and we denote this inverse, provided it exists, by A - I. Thus, 
A . A-I = I and A - I . A = I. Examples 1, 2, and 3 can then be expressed 
as follows: 

(D,)-I=D1/" 

( R.". /2) - 1 = R _.". /2 ' 

s-I = S. 

Exercise 2. Let T be the transformation with matrix (~ ~), so that T( ~) = ( ;;) 

for every vector (~). Find the matrix of T - I. 

Exercise 3. Let T be the transformation with matrix (~ ;). Find the matrix of 

T- 1• 

EXAMPLE 4. Let P be projection on the x-axis. Suppose B is an inverse of 
P. Then, BP = I, so (BP)(X) = X for every vector X. 
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Choose a vector X = ( ~) with Y =1= 0. Then P(X) = (~), and so 

(BP)(X) = B(P(X)) = B(~) = O. 

Hence 
X = (BP)(X) = O. 

But X was not the zero vector, and so we have reached a contradiction. 
From this we are forced to conclude that there is no linear transformation 
B satisfying BP = I. So P has no inverse. 

Next we observe that if A is a linear transformation which has an inverse 
A -I, then A satisfies the following condition: 

The only vector X with A (X) = 0 is the vector X = O. (7) 

To see this, choose X with A (X) = O. Then A -I(A (X)) = A - 1(0) = 0, and 
also A -I(A (X)) = (A -IA)(X) = leX) = X. So X = 0, and so (7) is true. 

Now let A be a linear transformation with matrix (~ ~). We shall 

prove: 

Proposition 1. Condition (7) holds if and only if ad - be =1= 0. 

PROOF. Suppose ad - be = 0. Then we have 

A( ~b) = (~ ~)( ~b) = (-ebO+ ad) = (~), 

A(!J=(~ ~)(!J=(ad~be)=(~). 
If (7) holds, it follows that (~b) =(~) and (!J =(~). Hence a,b,e,d 

are all zero, so A (X) = 0 for every X. But then (7) is false, so we have a 
contradiction. Hence if ad - be = 0, then (7) does not hold. 

Conversely, suppose ad - be =1= 0. Let X = (;) be a vector with A (X) 

= O. Then (0) = A (X) = (a b) ( x ) = (ax + bY). So 
Oed Y ex + dy 

ax + by = 0, 

ex + dy - 0. 

Multiplying the first equation by d and the second by b and subtracting, we 
get 

( ad - be)x = 0, 

and hence x = 0. Similarly, we get y = 0. Hence X =(;) =(~). Thus 
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x = 0 is the only vector with A (X) = 0, so (7) holds. The proposition is 
proved. 

We saw earlier that if A has an inverse, then (7) holds and so ad - bc 
=F 0. Let us now proceed in the converse direction. 

Consider a linear transformation A with matrix (~ ~). Assume 

ad - bc =F 0. (8) 

We seek an inverse B for A. Set m(B) =( f n, where p,q,r,s are 

unknown numbers. We must have 

so 

and 

Hence 

and so 

(~ ~)(~ ;)=(6 ~), 

ap + br = I, 
cp + dr = 0, 

aq + bs = 0, 

cq + ds = l. 

dap + dbr = d, 

bcp + bdr = 0, 

(ad - bc)p = d, 

and, since (8) holds, we get 

P _ d 
-ad-bc· 

To simplify the notation, we set .:1 = ad - bc. 

Exercise 4. Using the system (9), show that 

r = .::.£ tl . 

Exercise 5. Using the relations 

show that 

aq + bs = 0, 

cq + ds = 1, 

-b q=­
tl and s = i. 

(9) 

(10) 

(ll) 
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We have obtained 

Exercise 6. Calculate 

[~, Il[::l and [: :l[~, II 
Show that both products equal (b n· 

Earlier we saw that if A has an inverse, then ad - be =1= O. Combining this 
with Exercise 6, we have 

Theorem 2.4. Let A be a linear transformation with matrix (~ ~). 

(i) If A has an inverse, then ad - be =1= 0; 
(ii) If ad - be =1= 0, then A has an inverse Band 

m(B)- [~c r l (12) 

where Ll denotes ad - be. 

EXAMPLE 5. Let A have the matrix (; ~). Since 1·4 - 2·3 = -2 =1= 0, A 

has an inverse A - I. The matrix of A - I is 

4 
-2 
-3 
-2 

EXAMPLE 6. Solve the system 

for x andy. 

=1; ] = [~2 
-2 2 

x + 2y = 4, 

3x + 4y = 0 

We write the system in the form 

A(~)=U ~)(~)=(6)' 

(13) 
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By the preceding example, A -I has the matrix (if; _ ~/2)' Hence, 

(;)=A- 1(ci)=(3/; _~/2)(ci)=(~8). 
Hence, the solution is 

x= -8, y=6. 

§2. Systems of Linear Equations 

We consider the following system of two equations in two unknowns: 

ax + by = u, (14) 

ex + dy = tJ. 

For each choice of numbers u, tJ, we may ask: Does the system (14) have 
a solution x, y? And if (14) has a solution, is this solution unique? 

We may write the above system in matrix form by introducing the linear 

transformation A with matrix (~ :). Then the system (14) may be written 

A(X) = U, (IS) 

where X is the vector (~) and U =(~). 
Suppose that the transformation A has an inverse A -I. For given vector 

U, 

A (A -I(U») = (AA -I)(U) = U, 

so X = A -I(U) is a solution of (IS). Conversely, if X is a solution of (IS), 
then 

X = A -I(A(X» = A -I(U). 

So (IS) has the unique solution X = A -I(U). 

In particular, if U = 0, we find that X = (~) = A - I( ~) is the unique 

solution of the system 

ax + by = 0, 

ex + dy = 0. 
(16) 

This system, with zero on the right-hand side, is called the homogeneous 
system associated with the system (14). 

No matter what the matrix (~ :) is, the homogeneous system has at 

least one solution, the solution X = (g). This is called the trivial solution of 
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the homogeneous system, and we have seen above that if A has an inverse, 
then the trivial solution is the only solution of the homogeneous system. If 
A does not have an inverse, then by Theorem 2.4, ad - be = 0, and so by 

Proposition I in § 1 of this chapter, there is a nonzero vector X = (;) with 

A (X) = O. Then x, y is a nontrivial solution of the homogeneous system 
(16). 

What is the totality of solutions of (l6)? If a, b, c, d are all 0, then every 

vector ( ~ ) in the plane is a solution. If a and b are both 0, but c and dare 

not both 0, then the solutions are all (;) with ex + dy = 0, and so the 

totality of solutions is the line ex + dy = 0. A similar statement holds if c 
and d are both 0, but a and b are not both O. 

Finally, if A does not have an inverse and either a =!= 0 or b =!= ° and, also, 
either c =!= ° or d =!= 0, we may conclude that the totality of solutions of (16) 

is the line through the origin orthogonal to (~). 
We can summarize what we have found so far in the following two 

propositions. 

Proposition 2. The system (14) has a unique solution for every vector (~) if 
and only if the transformation A has an inverse. 

Proposition 3. The homogeneous system (16) has a nontrivial solution if and 
only if A fails to have an inverse. In this case the totality of solutions of (16) is 
either the whole plane or a line through the origin. 

Now suppose that A fails to have an inverse, and A =!= 0. Then the 
solutions of (16) form a line through the origin, or, in other words, if we fix 
one nonzero solution Xh of (16), then every solution of (16) equals tXh for 
some scalar t. If X and X are two solutions of the system A (X) = U, then 

A (X - X) = A (X) - A (X) = U - U = 0, 

so X - X is a solution of (3). Hence X - X = tXh and so for some t, 

X = X + tXh. 

We can therefore describe all solutions of the nonhomogeneous system (15) 
in the following way: 

Proposition 4. Assume A is not the zero transformation. If A tJ..oes not have an 
inverse, then if X is a particular solution ot (15), so that A (X) = U, we may 
express every solution of (15) in the form X + tXh, where Xh is a non-trivial 

solution of the homogeneous system (16). 
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EXAMPLE 7. Find all solutions of the system 

x + 2y = 3, 

-2x - 4y = -6. 

The corresponding homogeneous system is 

x + 2y=O, 
-2x - 4y = O. 

59 

(17) 

and the solutions to this system are the multiples t( ~ 2 ) of a vector Xh 

perpendiCular to (~) and ( =!) . We observe that ( ; ) = ( :) is a particu­

lar solution of the system (17), so it follows, by the above proposition, that 
the set of all solutions is given by 

X=(~)+t(~2)=(\~2/). 

EXAMPLE 8. Find all solutions of the system 

x + 2y = 3, 

-2x + 4y = -6. 

In this case the matrix (I 2) has an inverse, 
-2 4 

unique solution to the system (18) is given by 

t(i -12)(.!6)=(~)· 

EXAMPLE 9. Find all solutions of the system 

x + 2y = 3, 

-2x-4y=5. 

(18) 

! (4 
8 2 

-1 2 ), so the 

(19) 

In this case the system (19) has no solution. If we had a solution to the 
first equation, we could multiply both sides of the equation by - 2, to get 

-2x - 4y = -6, 
and this is inconsistent with the second equation, 

-2x-4y=5. 

More generally, we can get a solution of the system 

x + 2y = u, 

-2x - 4y = v 
if and only if 

-2x-4y= -2u 



60 Linear Algebra Through Geometry 

and 

-2x - 4y = v 

are consistent, Le., if - 2u = v. For example, in the system (17), we have 
u = 3, v = -6. 

Exercise 7. Find all solutions of the following systems. 

(a) 2x + y = 0, 
3x - Y = O. 

(b) 2x + Y = 0, 
-4x - 2y = O. 

Exercise 8. Find all solutions of the following systems. 

(a) 2x + y = I, 
3x - Y = 1. 

(b) 2x + Y = 1, 
-4x - 2y = 1. 

Exercise 9. Find all solutions of the system 

2x + y = I, 

-4x-2y=-2. 

Exercise 10. Find all solutions of the system 

x + y = 10, 

5x + 5y = 50. 

Exercise 11. For what choices of the numbers u, v does the system 
x + y = u, 

5x + 5y = v 

have a solution? 

§3. Inverses of Shears and Permutations 

Recall the elementary matrices, Hk , Jk , and K which we discussed at the 
end of Chapter 2.3. We had 

m(Hd = (! ~), m(Jd = (~7), m(K) = (~ ~). 

Exercise 12. Show that 

Hk- I = H_ k , 



CHAPTER 2.5 

Determinants 

Let A be a linear transformation with matrix (~ ~). The quantity 

ad- be 

is called the determinant of the matrix (~ ~) and is denoted 

(1) 

Expressed in these terms, Theorem 2.4 states that A has an inverse if and 

only if I ~ ~ I * O. We shall see that the determinant gives us further 

information about the behavior of A. 
Consider a pair of vectors XI' X2 regarded as an ordered pair with XI first 

and X2 second. Denote by a the angle from XI to X2 , measured counter­
clockwise, and assume that a =1= 0 and a =1= 7T. 

If sin a > 0, we say that the pair XI' X2 is positively oriented. This holds 
exactly when ex lies between 0 and 1J: (see Fig. 2.34). If sin ex < 0, we say the 
pair Xl' X2 is negatively oriented. This holds if ex is between 1J: and 21J: (see 
Fig. 2.35). 

EXAMPLE 1. The pair E I , E2 is positively oriented (see Fig. 2.36). The pair 
EI, -E2 is negatively oriented (see Fig. 2.37). The pair E2, EI is negatively 

oriented (see Fig. 2.38). The pair G)' ( ~ 1) is positively oriented (see Fig. 

2.39). 

We saw in (20), Chapter 2.0, that if (;) and (~) are two vectors and if a 
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X, 

X, 

sina> 0 

Figure 2.34 

is the angle from (~) to (~), then 

sin a = r:::==x=v=:=-~y:;u===:;­
~X2 + y2 ';u 2 + v2 

1f < a < 21f 

sin a < 0 

Figure 2.35 

Now let Xl = (;:), X2 = (;~) be a given pair of vectors. How can we 

tell from the numbers X I ,yp X 2 ,Yz whether or not the pair X p X2 is 
positively oriented? Let a denote the angle from Xl to X2, measured 
counterclockwise. By the preceding, 

(2) 

E, 

E, 

Figure 2.36 



2.5 Determinants 63 

-E2 

Figure 2.37 

Hence, sina > 0 if and only if x l Y2 - Ylx2 > O. But x l Y2 - Yl x 2 = 

j XI X2j. So, we conclude: 
YI Y2 

The pair XI ,X2 is positively oriented if 

and only if the determinant I X I 
YI 

(3) 

Next let A be a linear transformation which has an inverse. We say that 
A preserves orientation if whenever XI' X2 is a positively oriented pair of 

E2 

E, 

Figure 2.38 
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Figure 2.39 

vectors, then the pair A (X\),A (X2) of image-vectors is again positively 
oriented. 

EXAMPLE 2. 

(a) Rotation by Rw/2 preserves orientation; 
(b) D3 , stretching by 3, preserves orientation; 
(c) reflection in the x-axis does not preserve orientation. 

Let A be a linear transformation which preserves orientation and let 

(~ ~) be its matrix. Set E\ = (b)' E2 = (~). The pair E\, E2 is positively 

oriented. Hence, the pair A(E\),A(E2) is positively oriented. A(E\) =(~), 

A (E2) = (~). So by (3), we have 

Thus, if A preserves orientation, then the determinant is positive. Con­

versely, suppose (~ ~) > 0 and let us see whether it follows that A 

preserves orientation. Let X\ = (;:), X2 = (;:) be a positively oriented 

pair of vectors. Then 
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and 

A X = (a b)(X2) = (aX2 + bh ). 
(2) e d h eX2 + dh 

The pair A(XI),A(X2) is positively oriented, by (3), if and only if the 

determinant 

lax i + bYI aX2 + bhl > O. 
eX I + dYI eX2 + dh 

This determinant equals 

(axi + bYI)(ex2 + dh) - (ax2 + bh)(ex i + dYI) 

= aexlx2 + bdYlh + adxlh + beYl x2 

- aex2x I - bdhYI - adx2YI - behxl 

= ad(xlh - X2YI) - be(xlh - X2YI) 

= (ad - be)(xlh - X2YI)' 

So we have found 

I:;::~: :;:: ~:I=I: ~I'I:II ::1· (4) 

Since XI' X2 is positively oriented, the determinant I;: ;~ I > O. By hy­

pothesis, I ~ ~ I > 0. So 

lax i + bYI aX2 + bhl> 0, 
eX I + dYI eX2 + dh 

and so the pair A(XI),A(X2) is positively oriented. I.f I~ ~I < 0, the same 

calculation shows that A (XI),A (X2) is negatively oriented. In the preceding, 
the pair XI' X2 could be any given positively oriented pair of vectors. So we 
have proved the following: 

Theorem 2.5. Let A be a linear transformation with matrix (~ ~). If 

I ~ ~I > 0, then A preserves orientation. If I ~ ~I < 0, then A does not 

preserve orientation. 

Let us say that A reverses orientation if whenever XI' X2 is a positively 
oriented pair, then A (XI)' A (X2) is a negatively oriented pair. If we look 
back over our preceding argument, we see that, in fact, we have shown: if 

I ~ ~ I < 0, then A reverses orientation. 
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Figure 2.40 

Next, we shall calculate the effect of a transformation A on area. Let A 

have the matrix (: ~) and assume I ~ ~ I > O. Let 'TT be a parallelogram, 

two of whose sides are the vectors XI = (;:) and X2 = (;~), such that the 

pair XI' X2 is positively oriented. 
Let A ('TT) be the image of 'TT under A, i.e., A ('TT) = {A (X) I X is a vector in 

IXI X21 n} (see Figs. 2.40 and 2.41). By (3), > O. By (25), Chapter 2.0, 
YI Y2 

(5) 

A(X.) 

Figure 2.41 
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By Theorem 2.5 A (X1),A (X2) is a positively oriented pair. By (5), with 
A ('IT) replacing 'IT, 

lax 1 + bYI aX2 + bY21 
area(A ('IT») = . 

eX 1 + dYI eX2 + dY2 

By calculation (4), this determinant equals I ~ ~I'I;: 

area(A('IT»=I~ ~larea('IT). 

X21. Thus, we have 
Y2 

(6) 

If we instead assume that I ~ ~ I < 0 and perform the corresponding 

calculation, we get 

(7) 

We thus have: 

Theorem 2.6. Let A be a linear transformation with matrix (~ ~) sueh that 

I ~ ~I =1= o. If 'IT is any parallelogram with one vertex at 0, then 

area(A('IT») = (absolutevalueofl~ ~1)area('IT). 

We can derive an interesting consequence from Theorem 2.6. If C is a 
linear transformation, we write det C for the determinant of the matrix of 
C. Now let A, B be two linear transformations. Assume detA > 0, det B 
> O. Then A preserves orientation and B preserves orientation. It follows 
that BA preserves orientation. Let Q be the unit square Q={(x,y)1 
00;;; X 0;;; 1,00;;; yO;;; I}. 

(BA)( Q) = B(A( Q»). 
so 

area( ( BA )( ( Q »)) = area( B (A ( Q »)) = (det B )area( A ( Q »), 

by Theorem 2.6. Hence, 

det( BA) area( Q) = (det B) (detA) area( Q). 

It follows that 

det(BA) = (det B)( detA). (8) 

We have obtained this under the assumption detA > 0 and detB > O. 
Recall the earlier result: 

lax1+bY 1 aX2+bY2I=la hl.IXl x21. 
eX 1 + dYI eX2 + dY2 e d YI Y2 
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For this formula, (~ ~) and (;: 

left-hand side we have the matrix 

without restriction. We have: 

Linear Algebra Through Geometry 

X2) . are any two matnces, and on the 
Yz 

of (~ ~)(;: ;~). So (8) is true 

Theorem 2.7. If A,B are two linear transformations, then 

det( BA) = (det B)( detA). 

Exercise 1. Calculate the product of the matrices (~ ~) and ( -01 ;) and verify 

Theorem 2.7 when A = ( 1 2) and B = (-I 1 ) 
3 4 0 5' 

Exercise 2. Let Q be the square of side 1 whose edges are parallel to the coordinate 

axes and whose lower left-hand corner is at (;). If A is a linear transformation, 

define 

A ( Q ) = {A (X) I the vector X is in Q }. 

In each of the following cases, sketch A (Q) and find area(A (Q». 

(i) Matrix of A is ( ~ 

(ii) Matrix of A is (i 
(iii) Matrix of A is (~ 

0) I . 

~). 
~). 

Exercise 3. Show that the conclusion of Theorem 2.6 remains valid when 'TT is any 
parallelogram, not necessarily with one vertex at O. 

Exercise 4. In this exercise Q\, Q2' etc., are rectangles with sides parallel to the 

axes. Q\ is the square of side \0 with lower left-hand corner at (~). Q2 and Q3 are 

squares of side 2 with lower left-hand corners at (~) and (~), respectively. Q4 is a 

square of side 1 with lower left-hand corner at ( 445). Qs is the rectangle of height 1, 

base 4, with lower left-hand corner at (~). We denote by W the region obtained by 

removing from Q\ the figures Q2' Q3' Q4' Qs· 

(a) Draw Won graph paper. 

(b) Let A be the linear transformation having matrix ( ~ 0) 1 . 

(c) Draw the image A (W) on graph paper. 
(d) What is the area of A ( W)? 
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§ 1. Isometries of the Plane 

Let us find all linear transformation T which preserve length, i.e., such that 
for every segment, the length of the image of the segment under T equals 
the length of the segment, or, in other words, whenever X, and X2 are two 
vectors, then 

! T(X,) - T(X2)! = IX, - XzI. (9) 

Such a transformation is called an isometry. 
We know that T(X,) - T(X2) = T(X, - X2). So (9) says that 

! T(X, - X2)! = IX, - X2!' 

Hence (9) holds, provided we have 

! T(X)! = IX! for every vector X. (10) 

Conversely, if (9) holds, we get (10) by setting X, = X, X2 = O. So (9) and 
(10) are equivalent conditions. 

Let T be a linear transformation satisfying (10) and denote by (~ ~) 
the matrix of T. What consequences follow for the entries a, b, e, d from the 

fact that T preserves length, i.e., that (10) is true? 

Set X = ( ~ ). Then 

T(X) = (a b)(X) = (ax + bY), 
e d y ex + dy 

and so 

!T(X)! = ~(ax + by)2 + (ex + dy)2 . 

Since! T(X)! = IX! = -/x2 + y2 , we have 

~(ax + by)2 + (ex + dy)2 = -/x2 + y2 , 

and so, simplifying, we get 

a2x 2 + 2abxy + by2 + e2x 2 + 2edxy + d y 2 = x 2 + y2, 
I.e., 

(a2 + e2)x2 + (b2 + d 2)y2 + (2ab + 2ed)xy = x 2 + y2. (11) 

This holds for every vector X = (~). Setting X = (6)' we get 

(i) 

and setting X = ( ~), we get 

(ii) 
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Inserting this information in (11) and simplifying, we get 

(2ab + 2cd )xy = O. 

Setting x = 1, Y = 1 and dividing by 2, we get 

(iii) ab + cd = O. 

Thus relations (i), (ii), and (iii) are consequences of (10). We can interpret 
these relations geometrically. Set 

V=(~), V=(~). 
Then (i), (ii), and (iii) say that: 

IVI = I, IVI = I, and V· V = O. 

Since lUI = 1, we can write (a) = V =(C?Sf}), where f} is the polar angle of 
c smf} 

V, so a = cosf}, c = sinf}. 
Since V· V = 0 and IVI = I, V is obtained from V either by a positive or 

a negative rotation by 'TT /2. In the first case, (b) = V = R ( cos f}) 
d 11/2 sinf} 

=( ~~~n/), so b = -sinf}, d= cosf}. Hence, 

(~~)=(~~:: ~~!~f}). (12) 

In the second case, (b) = V = R ( cos f}) = ( sin f) ) so b = sin f} 
d -11/2 sinf} - cosO' , 

d = -cosO. Hence, 

(~ ~) = (~~:: ~~o~O). (13) 

We recognize the matrix (12) as the matrix of the rotation Ro (see Fig. 
. (cos 2() sin 2(} ) . 

2.42). Also, we recall that m Chapter 2.3, we saw that . () IS 
sm 2 -cos 2(} 

the matrix of the reflection in the line through the origin in which forms an 

angle f} with the positive x-axis. It follows that the matrix (C?SOO sin (0) 
sm - cos 

in (13) is the matrix of reflection through the line forming an angle 1- 0 with 

the positive x-axis. So we have: 

Theorem 2.S. Let T be a length-preserving linear transformation, i.e., assume 

that T satisfies (10). Then either the matrix of T is (C?SOO - sinoO) for some 
sm cos 

number 0 and then T is rotation Ro, or else the matrix of T is 

( C?S f) sin 0 ), and then T is reflection through the line through the origin 
smf} - cosO 

which forms an angle of f} /2 with the positive x-axis. 
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Figure 2.42 

Exercise 5. For each of the following matrices, the corresponding transformation is 
either a rotation or a reflection. Decide which case occurs for each matrix. When it 
is a rotation, find the angle of rotation, and when it is a reflection, find the line in 
which it reflects. 

(a) (-1//2 1//2), 
1//2 1//2 

(b) ( 3/5 
-4/5 

(c) (~ ~). 

4/5) 
3/5 ' 

Exercise 6. A transformation T is length preserving and the matrix of T is (~ ~). 

(i) Show that the determinant I ~ ~ I is either I or - l. 

(ii) Show that T is a rotation when the determinant is I and a reflection when the 
determinant is - l. 

Exercise 7. Let T1, T2 be two length-preserving transformations. 

(a) Show that TI T2 is length preserving. 
(b) Show that if TI and T2 are both reflections, then TI T2 is a rotation. 
(c) Show that if TI is a rotation and T2 is a reflection, then Tl T2 is a reflection. 

Exercise 8. Let Tl be reflection through the line along ( ~ ) and let T2 be reflection 

through the line along (D. Write TI T2 in the form TI T2 = Re and find the num­

ber 8. 

Having studied the effect of a linear transformation on area and length, 
we can ask what happens to angles. Let L 1,L2 be two rays beginning at the 
origin and let (J be the angle from LI to L 2, measured counterclockwise. Let 
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L. 

Figure 2.43 

A be a linear transformation having an inverse. The images A (L,) and 
A (L2) are two new rays beginning at O. Denote by 0' the angle from A (L 1) 

to A(L2 ) (see Figs. 2.43 and 2.44). If ()' = () for each pair of rays L 1 • L 2 • 

then we say that A preserves angle. 
We devote the next set of exercises to studying those linear transforma­

tions which preserve angles. 

Exercise 9. Let A and B be two linear transformations which preserve angles. Show 
that the transformation AB and BA preserve angles. 

Exercise 10. 

(a) Show that each rotation Ro preserves angles. 
(b) Show that each stretching Dr preserves angles. 

A(L.) 

A (L,) 

Figure 2.44 
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Exercise 11. Let Ro and Dr be rotation by () and stretching by I, respectively. Then 

m (R ) = (C?S () - sin () ) 
o sm () cos(} 

and 

(, 0,). m(Dr) = 0 

(a) Show that DrRo preserves angles. 
(b) Find the matrix m(DrRo)· 
(c) Show there exist numbers a, b, not both 0, such that m(DrRo) = 

(~b ~). 
Exercise 12. Show that if a, b are any two numbers not both 0, then the transforma­

tion whose matrix is (a b) preserves angles. 
-b a 

Exercise 13. Let A have the matrix (~ 
only if II = 12, 

o ). Show that A preserves angles if and 
12 

In the following exercises, A denotes a linear transformation which 

preserves angles and (~ ~) = m(A). 

Exercise 14. Set EI =(6)' E2 =(n· Then A(EI) =(~), A (E2) =(~). Show that 

the angle from (~) to (~) is 7T /2. 

Exercise 15. Write (a) in the form (a) = (/IC~S(}) where II > O. Show that (b) 
C C Ilsm(} d 

can be expressed m the form = , where 12 > O. . ( b ) (- 12sin () ) 
d t2cos () 

Exercise 16. By the preceding, 

Show that 

( a b) = (C~s() 
c d sm(} 

- sin () )(/1 0). 
cos () 0 12 

Exercise 17. Denoting by B the transformation with matrix 

preceding exercise, we get A = RoB. 

(a) Show that B preserves angles. 

( II 0) o 12 ' by the 

(b) Using Exercise 13, show that tl = t2 and deduce that B equals the stretching 
Dr> where, = t l • 
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Exercise 18. Use the preceding exercise to prove the following result: if A is a linear 
transformation which preserves angles, then A is the product of a stretching and a 
rotation. 

Exercise 19. Show that if A is a linear transformation which preserves angles, then 

the matrix of A has the form (a b). 
-b a 

§2. Determinants of Shears and Permutations 

Recall the elementary matrices 

m(Hk )=(! ~), m(Jk)=(~ 7), m(K)=(~ ~). 

Exercise 20. Find the determinants for m(Hd, m(Jk ), and m(K). 



CHAPTER 2.6 

Eigenvalues 

EXAMPLE I. Let L be a line through the origin and let S be the transforma­
tion which reflects each vector in L. If X is on the line L, then S(X) = X. If 
X is on the line L' which goes through the origin and is perpendicular to L, 
then S(X) = - X. 

Let T be a linear transformation. Fix a scalar t. If there is a vector X =1= 0 
such that T(X) = tX, then we say that t is an eigenvalue of T. If t is an 
eigenvalue of T, then each vector Y such that T(Y) = tY is called an 
eigenvector corresponding to t. 

In the preceding example, t = I and t = - I are eigenvalues of the 
reflection S. Every vector Y on L is an eigenvector of S corresponding to 
t = I, since S(Y) = Y = I . Y. Every vector Y on L' is an eigenvector of S 
corresponding to t = -1, since S(Y) = - Y = (-1)' Y (see Fig. 2.45). 

Let T be a linear transformation. A vector X :1= 0 is an eigenvector of T, 
corresponding to some eigenvalue, if and only if T takes X into a scalar 
multiple of itself. In other words, X is an eigenvector of T if and only if X 
and T(X) lie on the same straight line through the origin (see Fig. 2.46). 

EXAMPLE 2. Let Dr be stretching by r. Then for every vector X, Dr(X) = rX. 
Hence, r is an eigenvalue of Dr. Every vector X is an eigenvector of D 
corresponding to the eigenvalue r. 

EXAMPLE 3. Let R,,/2 be rotation by nl2 radians. If X is any vector :1=0, it 
is clear that X and R,,/2(X) do not lie on the same straight line through the 
origin. It follows that R,,/2 has no eigenvalue (see Fig. 2.47). 

Exercise 1. Let L be a straight line through the origin and let P be the transforma­
tion which projects each vector X to L (see Fig. 2.48). 
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L' 

Figure 2.45 

(a) Show that 0 and I are eigenvalues of P. 
(b) Find all the eigenvectors which correspond to each of these eigenvalues. 
(c) Show that P has no eigenvalues except for 0 and 1. 

Exercise 2. Find all eigenvalues and corresponding eigenvectors for each of the 
following transformations: 

(a) Rotation by ." radians, 
(b) /, 
(c) O. 

Let A be a linear transformation and (~ ~) its matrix. Assume t is an 

eigenvalue of A and (~) is a corresponding eigenvector with (~) ~(~). 

Figure 2.46 
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and so 

R (X) 
,,12 

Figure 2.47 

ax + by = lx, 

ex + dy = Iy, 

(a - I)X + by = 0, 

ex + (d - I)y = O. 

y 

Figure 2.48 
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X 

L 
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But x, yare not both O. So we can apply Proposition 1, Chapter 2.4, and 
conclude that 

(a - t)( d - t) - bc = O. (1) 
Equation (1) can be expressed in the equivalent forms: 

I a ~ t d ~ t I = 0, (2) 

and 

t 2 - (a + d)t + (ad - bc) = O. (3) 

We call Eq. (3) the characteristic equation of A. We have seen that if t is 
an eigenvalue of A, then t is a root of Eq. (3). Furthermore, since t is a real 
number by definition, t is a real root. 

Conversely, suppose that t is a real root of (3). Let us show that t is then 
an eigenvalue of A. By assumption, 

la - t b 1=0. 
c d - t 

By Proposition 1, Chapter 2.4, there exists a pair of scalars x, y with 

( ~ ) *( ~) such that ( a ~ t d ~ t) ( ~ ) = ( ~), and so 

and 

This implies that 

so 

(a - t)x + by = 0 

cx + (d - t)y = O. 

ax + by = tx, 

cx + dy = ty, 

Thus, t is an eigenvalue of A, and (~) is an eigenvector corresponding to t. 

In summary, we now know: 

Theorem 2.9. A real number t is an eigenvalue of the linear transformation A 
if and only if t is a root of the characteristic equation of A. 

Exercise 3. Find the characteristic equation and calculate its roots for each of the 
following transformations: 

(a) stretching Dr; 
(b) rotation Ro; 
(c) reflection in the y-axis; 

(d) reflection in the line along ( ~). 
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Note. By an eigenvalue (or eigenvector) of a matrix we shall ~ean an 
eigenvalue (or eigenvector) of the corresponding linear transformatton. 

EXAMPLE 4. Find all eigenvalues and eigenvectors of the matrix (! _\ ). 
SOLUTION. The characteristic equation here is 

13 -4 t 4 1-0 -3-t - , 

or 

t 2 - 25 = O. 
Its roots are t = 5 and t = - 5. So, the values 5 and - 5 are the eigenvalues. 

Let us find the eigenvectors which correspond to t = 5. We seek (~) with 

Thus, 

so 

3x + 4y = 5x, 

4x - 3y = 5y, 

-2x + 4y = 0, 

4x - 8y = O. 

It follows that x = 2y. Thus, an eigenvector with eigenvalue 5 has the form 

Conversely, every vector of this form is an eigenvector for 

Notice that the eigenvectors we have found fill up a straight line through 

the origin. Try to find the eigenvectors of (3 4) which have - 5 as 
4 -3 

their eigenvalue. 

We now turn our attention to a class of matrices which occur in many 

applications of linear algebra, the symmetric matrices. A matrix (~ ~) is 

called symmetric if b = c, i.e., if the matrix has the form (; ~). The matrix 

( 3 4), which we studied in Example 4, is symmetric. 
4 -3 
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Let A be a linear transformation and assume m(A) = (~ ~), so that 

m(A) is symmetric. The characteristic equation of A is 

I a b t c ~ t I = 0, 

or 

(a - t)( c - t) - b2 = t2 - (a + c)t + (ac - b2) = o. (4) 

The roots of (4) are 

a + c ± ~( a + C)2 - 4( ac - b2) 
t = -------=-2------

Simplifying, we obtain 

(a + C)2- 4(ac - b2) = a2 + 2ac + c2 - 4ac + 4b2 

= a2 - 2ac + c2 + 4b2 = (a - C)2+ 4b2. 

Since (a - ci + 4b2 ~ 0, its square root is a real number. We consider 
two possible cases: 

(i) (a - cl + 4b2 = 0; 

then a = c and b = 0, so m(A) =(~ ~) =(~ ~), and so A is stretching, 

A = af. 

(ii) (a - ci + 4b2 > 0; 
then (4) has the two distinct real roots 

(a + c) + ~(a - C)2 + 4b 2 

t) = 2 

and 

(a + c) - ~(a - C)2 + 4b2 

t2 = 2 

By Theorem 2.9, t) and t2 are eigenvalues of A. We have proved: 

Proposition 1. Let A be a linear transformation with symmetric matrix 

( : ~). Then either A = af or A has two distinct eigenvalues t), t 2 where 

t) =!( (a + c) + ~(a - C)2 + 4b 2 ), 

t2 = 1 ( a + c) - ~( a - C)2 + 4b2 ). 
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Exercise 4. For each of the following matrices, find two eigenvalues of the corre­
sponding linear transformation: 

(i) (~ ! 5)' 
(ii) (: D, 

(iii) (0 If ). 
If 'TT 

Exercise 5. For each of the linear transformations in the preceding exercise, find 
one nonzero eigenvector corresponding to each eigenvalue. Show that in each case, 
if XI' X2 are eigenvectors corresponding to distinct eigenvalues, then XI and X2 are 
orthogonal. 

Exercise 5 suggests that the following theorem may be true. 

Theorem 2.10. Let A be a linear transformation with symmetric matrix 

(~ ~) and let t I' t2 be distinct eigenvalues of A. Choose nonzero eigenvectors 

XI,X2 corresponding to tl and t2, respectively. Then XI and X2 are orthogonal. 

PROOF. First assume that b =1= O. Set XI = (;\), X2 = (;:). Then 

(~ ~)(;:) = t l (;:). So 

or 

bYI = (tl - a)xl . 

If XI = 0, then bYI = 0, and since b =1= 0 by assumption, then YI = 0, so 

XI =(g), contrary to hypothesis. SO, XI =1= 0 and 

Similarly, x 2 =1= 0 and 

2i = tl - a 
XI b 

Yl t2 - a 
x 2 = -b-

SinceYI/xl andYl/x2 are the slopes of XI and X2, to prove that XI and X2 

are orthogonal amounts to showing that 

(~II ) (~: ) = - 1, i.e., C 1 ~ a ) C2 ~ a ) = - 1. (5) 
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Try showing that (5) is true, using the values of 1 1,12 obtained in the last 
theorem, before reading the rest of the proof. 

By Proposition 1, in this chapter, 

11 =!a +!c +! V(a - C)2 + 4b 2 

and 

So, 

and 

Then 

Hence, 

( 11 ~ a )( 12 ~ a ) = ~~2 = -1, 

as desired. Thus, XI and X2 are orthogonal. 

Now if b=O, then (~ ~)=(~~). So tl=a, XI=(~I) and t2 =c, 

X2 = ( ~2)' Since (~I) and (~2) are orthogonal, the desired conclusion 

holds here as well. 

An alternative proof of Theorem 2.10 can be obtained from the following 
exercises. 

Exercise 6. Let A be the linear transformation which occurs in Theorem 2.10. Let 
X, Y be any two vectors. Show that 

A (X) . Y = X . A (Y). 

Exercise 7. Let A be as in the preceding exercise and let f I' f2 be distinct eigenval­
ues of A, and X I' X2 the corresponding eigenvectors. 

(a) Show A (XI) . X2 = II(XI . X2) and A (X2)· XI = f2(XI . X2)· 

(b) Using Exercise 6, deduce from (a) that fl(X I . X2) = 12(XI . X2)· 
(c) Using the fact that 11 *-/2 , conclude that XI' X2 = O. Thus, Theorem 2.10 
holds. 
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Exercise 8. For each of the following matrices, find all eigenvalues and eigenvec­

tors: 

- sin (J) 
cos (J , 

sin (J ) 
- cos(J . 

Exercise 9. Given numbers a, b, c, d, show that the matrices (~ ~) and (~ ~) 

have the same eigenvalues. 

Exercise 10. Denote by N a linear transformation such that N 2 = O. Show that 0 is 
the only eigenvalue of N. 

Exercise 11. Let B be a linear transformation such that B has the eigenvalue 0 and 
no other eigenvalue. Show that B2 = O. 

Exercise 12. Let E be a linear transformation such that E2 = E. What are the 
eigenvalues of E1 

Exercise 13. Let C be a linear transformation such that C has eigenvalues 0 and I. 
Show that C 2 = C. 

Exercise 14. Let T be a linear transformation with nonzero eigenvectors XI, X2 and 
corresponding eigenvalues I I' 12 , where I I "F 12, 

Set S = (T - III)(T - 121). 

(a) Show that S(X2) = O. 
(b) Show that S = (T - 121)(T - III). 
(c) Show that S(XI ) = O. 
(d) Show that S(CIXI + C2X2) = 0, where CI,C2 are given constants. 
(e) Show that S = 0, i.e., 

Exercise 15. Let T be a linear transformation and let (~ ~) be its matrix. Assume 

T has eigenvalues 11,12 with I, "F 12, 

Using part (e) of Exercise 14, show that 

T2-(a+d)T+(ad-bc)/=0. (6) 
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Exercise 16. Let T be a linear transformation and let (~ ~) be its matrix. Do not 

assume that T has any eigenvalues. Show by direct calculation that (6) is still true. 

Exercise 17. Verify formula (6) when T has matrix 

(a) U ~), 
(b) (~ ~), 

(c) (~ ~). 



CHAPTER 2.7 

Classification of Conic Sections 

We can use matrix multiplication to keep track of the action of a transfor­

mation A on a pair of vectors (;:) and (;~). Let m(A) be the matrix of 

A, and consider the matrix (Xl X2) whose columns are (Xl) and (X2). Yl Y2 Yl Y2 

If we set (~D = A (;:) and (~D = A (;~), then, as we shall prove, 

m(A)( Xl X2) = (X~ X~). (I) 
Yl Xl Yl Y2 

EXAMPLE 1. m(A)=(j ~), (;: ;~)=(~ -0 1). Then A(~)=(~), 
A( ~I) =( =: ~). By (I), 

(~ ~)(~ ~1)=(~ =:~). 
Direct computation verifies this equation. 

To prove (I) in general, we write 

m(A)=(~ ~). 
Then 
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Formula (1) states that 

m(A)( XI X2) = (axl + bYI aX2 + bY2 ), 
YI Y2 eX I + dYI eX2 + dY2 

which is true because of the way we have defined multiplication of 
matrices. So formula (1) holds in general. 

Now suppose that 

A(;:) = tl(;:), A(;~) = t2(;~)' 
or, in other words, that (;:) and (;~) are eigenvectors of A. Then (1) 

gives 

m(A)(XI X2)=(tIXI t2X2). 
YI Y2 tlYI t2Y2 

The matrix on the right-hand side equals 

( XI X2)(tl 0), 
YI Y2 0 t2 

so we have found the following result. 

( Xyll) and (Xy22) Let the linear transformation A have eigenvectors 

corresponding to eigen val ues t I , t 2. Then 

(2) 

In addition, now suppose that the eigenvectors (;:) and (;~) are not 

linearly dependent. It follows by (25), Chapter 2.0, that the determinant 

I X I X21 is different from 0, and so, by Theorem 2.4, the matrix (X I Xy2 ) 
YI Y2 YI 2 

possesses an inverse (X I X2 ) - I . We now multiply both sides of Eq. (2) on 
YI Y2 

the right-hand side by (X I X2) -I. This yields 
YI Y2 

m(A)=m(A)(;: ;:)(;: ;:rl =(;: ;:)(ci ~)(;: ;:rl 

We introduce the linear transformations P and D with m(P) = 

( XI X2), m(D) = (tl 0). The last equation can now be written 
YI Y2 0 t2 

m(A) = m(P)m(D)m(p)-I. 
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It follows that A = PDP -I. We have proved: 

Theorem 2.11. Let A be a linear transformation with linearly independent 

eigenvectors (;:) and (;~), corresponding to the eigenvalues tl and t2. Then 

A=PDP- I (3) 

Wherem(p)=(;: ;~)andm(D)=(ci ~). 

Note: Assume tl and t2 are eigenvalues of A and Xp X2 are correspond­
ing nonzero eigenvectors. If tl =1= t2, then it follows that XI and X2 are 
linearly independent. To see this, suppose the contrary, i.e., suppose X2 

= sXI for some scalar s with s =1= O. Then 

A (X2) = A (sXI) = sA (XI) = stlX I • 

and so st IXI = A (X2) = t2X2 = t2sX I • It follows that st I = t2s, and so t I 
= t2 , which contradicts our assumption. So XI and X2 are linearly indepen­
dent, as claimed, as long as t I and t2 are distinct. 

Whenever A is it linear transformation whose characteristic polynomial 
has distinct real roots, then formula (3) is valid. 

Note: Recall that a matrix whose entries are 0 except for those on the 

diagonal, i.e., whose form is (~ ~), is called a diagonal matrix. The matrix 

of the transformation D above is a diagonal matrix. 
It is easy to compute the powers of a diagonal matrix. 

( s' 0)2 = (s O)(s 0) = (S2 0), 
o tOt 0 t 0 t2 

S 0 _ s 0 s 0 _ S2 0 S 0 S3 0 ( )3 ( )2( 
o t - 0 t 0 J -( 0 t2 )( 0 J = (0 t 3 )' 

Continuing in this way, we see that the nth power of the diagonal matrix 

(~ ~) is the diagonal matrix ( s; ~) whose entries on the diagonal are 

the nth powers of the original entries. 

Exercise 1. For each of the following matrices, find the nth power of the matrix 
when n = 2,3,7,100. 

(i) (01 ~), 

(ii) (~ I~)' 
(iii) (~ ~). 



88 Linear Algebra Through Geometry 

Now let A and D be the linear transformations which occur in Theorem 
2.11. By (3), A = PDP-I. Hence, 

A2 = (PDP-I)(PDP- I) = PD(P-Ip)DP- I = PDIDP-I 

= PDDP- I = PD 2p- I, 

A 3 = AA2 = (PDP -I)(PD 2p -1) = PD(P -Ip)D 2p- I 

= PDID 2p- I = PD 3p- I. 

Continuing in this way, we find that 

A4 = PD 4p-1, 
and in general, 

where n is a positive integer. It follows that 

(4) 

m(A n) = m(PDnp -1) = m(P)m(Dn )m(P -1) = m(P)(m(D )fm(P -1). 

Smce m(D) = 1 , we know that (m(D)t = 1 n. So we have . (t 0) (tn 0) 
o GOG 

(5) 

Note: Formula (5) allows us to calculate the nth power of m(A) in a 
practical way, as the following example and exercises illustrate. 

EXAMPLE 2. Let us find the nth power of the matrix (3 4) for 
4 -3 

n = 1,2,3 .... 
In Example 4, Chapter 2.6, we found that the eigenvalues are t 1 = 5, 

t2 = - 5. As corresponding eigenvectors, we can take 

The transformation P of Theorem 2.11 then has matrix m(P) = (i 
Then 

-1 -1 (2/5 1/5) 
m(P ) = (m(P») = _ 1/5 2/5 . 

By (5), 

- 1) 2 . 
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For instance, taking n = 3, we get 

( 3 4)3= (2 -1)(125 
4 -3 1 2 0 

o )( 2/5 1/5) 
- 125 - 1/5 2/5 

= (~ - 1)( 50 25) = ( 75 
2 25 - 50 100 

100 ). 
-75 

. f' h . . (I 3) F' d Exercise 2. Let A be the linear trans ormatIOn w ose matnx IS 3 _ I . In a 

linear transformation D with diagonal matrix and find a linear transformation P, 
using Theorem 2.11 such that A = PDP -1. 

Exercise 3. Let A be as in the preceding exercise. Calculate the matrix meA J~ 

=U ! 1)10. 

Exercise 4. Using Theorem 2.11, calculate ( : 1)8 I . 

Exercise S. Using Theorem 2.11, calculate (! ~y 
Exercise 6. Fix scalars a, b. Show that if n is an even integer, then (~ 
diagonal matrix. 

b )n is a 
-a 

The second application of eigenvalues which we shall discuss in this 
chapter concerns quadratic forms. Let a, b, c be given scalars. For every 
pair of numbers x, y, we define 

H(x, y) = ax2 + 2bxy + cy2. 

H is called a quadratic form, i.e., a polynomial in x and y, each of whose 
terms is of the second degree. 

Associated with H, we consider the curve whose equation is 

ax2 + 2bxy + cy2 = 1. (6) 

We denote this curve by C H' 

EXAMPLE 3. 

(i) a = 1, b = 0, c = l. Then CH is the circle: x 2 + y2 = l. 
(ii) a = 1, b = 0, c = -l. Then CH is the hyperbola: x 2 - y2 = l. 

Question. Given numbers a, b, c, how can we decide what kind of curve CHis? 

Let us introduce new coordinate axes, to be called the u-axis and the 
v-axis, by rotating the x- and y-axes about the origin (see Fig. 2.49). 
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y 

u 

----------+---------~~---------+~---------x 

Figure 2.49 

Expressed in terms of the new u and v coordinates, the equation of C H may 
look more familiar. This will happen if CH has an axis of symmetry and we 
manage to choose the u-axis along that axis of symmetry. 

EXAMPLE 4. a = 0, 2b = 3, c = O. CH has the equation: 3xy = I or xy = t. 
Evidently the line x = y is an axis of symmetry of CH • Let us choose the 
u-axis along this line. Then the v-axis falls on the line x = - y. 

Suppose a point X has old coordinates (;) and new coordinates (~). 
Denote by a the polar angle of X in the (u, v)-system. Then the polar angle 
of X in the (x, y)-system is IX + n/4 (see Fig. 2.50). Hence, 

Also, 

so 

[x] = IXI[cos(a + "'/4)] = IXI[(cosa)1i /2 - (sina)1i /2] 
y sin(a + ",/4) (sina)1i /2 + (cosa)1i /2 

= Ii [IXlcosa -IXlsina]. 

2 IXlsin a + IXlcos a 

(u) = IXI(c?sa) 
v sma' 

u = IXlcosa, 

v = IXlsina. 
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Figure 2.50 

, , 

(x)=Ii(u-v) 
Y 2 U+V' 

{

X = Ii u - Ii v 
2 2' 

Ii Ii y= T U + TV. 

, , , , , 

/ 

, 

Now suppose X is a point on CH. Then 3xy = l. Hence, 

3(1 u-1 v)(1 u+ 1 V)=I, 
or 

2 

3( 1 ) (u - v)(u + v) = 1, 
or 

91 

, 

(7) 
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We have found: if X is a point on CH with new coordinates (~), then 

(8) 

Equation (8) is an equation for CHin the (u, v)-system. We recognize (8) 
as describing a hyperbola with one axis along the u-axis. 

Now Ie; a,b,c be given numbers with b =1= 0 and let H(x, y) = ax 2 + 
2bxy + cy . We can express H(x, y) as the dot product 

( ax + ,bY) ( x ) bx + cy . y = (ax + by)x + (bx + cy)y = H(x,y). 

Also, 

( ax + by) = (a b) ( x ). 
bx + cy bey 

Thus, 

(9) 

Now, (~ ~) is a symmetric matrix, so Proposition I, Chapter 2.6, tells 

us that (~ ~) has eigenvalues 11,/2 , Since b=l=O, /1 =1=/2 , Let XI be an 

eigenvector corresponding to II such that IXli = 1. 
We choose new coordinate axes as follows: The u-axis passes through XI' 

directed so that XI points in the positive direction. The v-axis is chosen 
orthogonal to the u-axis and oriented so that the positive u-direction goes 
over into the positive v-direction by a counterclockwise rotation of 'TT /2 
radians. 

Set XI = (;:) and set X2 = ( ~I). Then X2 lies on the v-axis. We know 

that each eigenvector corresponding to 12 is orthogonal to XI and, hence, 
lies on the v-axis. Hence, every vector lying on the v-axis is an eigenvector 
corresponding to t2 • In particular, X2 is such an eigenvector (see Fig. 2.51). 

Let X be any point, with (~) its old coordinates and (~) its new 

coordinates. Then 

Then 

f u = X· XI = (~) . (;:) = XXI + yYI' 

1 v = x· X2 = (~) . ( -~I) = - xYI + YXI . 

(10) 



2.7 Classification of Conic Sections 

Using (9), we have 
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Figure 2.51 

t,X, 

H(X,y)=(~ ~)(X)'X=[(~ ~)(UX\+VX2)]'[UX\+VX2] 
= (ut\X\ + Vt2X2)· (uX\ + vX2) 

= u2t\ + V 2t 2 • 

Thus, we have found: 

93 

Theorem 2.12. Let t \' t2 be the eigenvalues of the matrix (~ ~), where 

b =t= O. Let X be any point, and let (~) be its old coordinates and (~) be its 

new coordinates. Then 

(11 ) 

Now let X be a point on the curve CH whose equation is ax2 + 2bxy + 
cy2 = 1. Let (~) and (~) be, respectively, the old coordinates and the new 

coordinates of X. Then using (11), we get 

t\u2 + t2v2 = ax2 + 2bxy + cy2 = 1, 

since (~) lies on CH • So 

(12) 
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Equation (12) is valid for every point on CH and only for such points. 
This means that (12) is an equation for CH in the (u, v)-system. 

EXAMPLE 5. Describe and sketch the curve CH : 3X2 + 8xy - 3y2 = 1. Here 

a = 3, b = 4, c = - 3. The matrix (a b) = (3 4). The eigenvalues are 
b c 4 - 3 

t I = 5 and t2 = - 5. 

Since we need an eigenvector XI = (;:) of length 1, we set XI = 

(l / J5)(2) = [2/J5]. So 
1 1/J5 

1 
YI=-' 

J5 
We choose the u-axis to pass through X" so it is the line Y = 2x, and the 
v-axis is the line Y = - t x. In the new system, the equation of CHis 

(13) 

where we have used (12) with t I = 5, t2 = - 5. 
We can check Eq. (13) by using the relations between u, v and x, y. By 

(10) we know 

Hence, 

2 1 u = XIX + YIY = -x + - Y, 
J5 J5 

1 2 v= -YIX+XIY= --x+-y. 
J5 J5 

5u2 - 5v2 = 5( ~ x + ~ Y r -5( - ~X + ~ Y r 
= 5 . t(2x + y)2_ 5 . t( - x + 2y)2 

= 4X2 + 4xy + y2 - x2 + 4xy - 4y2 

= 3x2 + 8xy - 3y2. 

Thus, for every point X in the plane, if ( ~) are the old and (~) are the new 

coordinates of X, then we have ' 

5u2 - 5v2 = 3x2 + 8xy - 3y2. (14) 

By definition of CH , X lies on CH if and only if 3X2 + 8xy - 3y2 = 1 and so 
if and only if 5u2 - 5v2 = 1. So (13) is verified. 
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From Eq. (13), we find that CH is a hyperbola with its axes of symmetry 
along the u- and v-axes (see Fig. 2.52). 

Now let H(x, y) = ax2 + 2bxy + ey2 be a given quadratic form. Assume 

b =1= 0. Let t I' t2 denote the eigenvalues of the matrix (~ ~). We have: 

Theorem 2.13. Let CH denote the eurve ax2 + 2bxy + ey2 = l. 
(i) If t 1, t2 are both> 0, then CH is an ellipse. 

(ii) If 11,12 < 0, then CH is empty. 
(iii) If l(>t2 have opposite signs, then CH is a hyperbola. 

Exercise 7. Using the fact that in the (u,v)-system, CH has equation 

t)u2 + t2v2 = I, 

prove Theorem 2.13. 

EXAMPLE 6. Describe the curve C H' 

x 2 + 2xy + y2 = l. (15) 
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Here (~ ~ ) = ( ! !) and t I' t2 are the roots of the polynomial 

II - t I 1= t2 - 2t. 
I I - t 

So t I = 0, t2 = 2. In the (u, v)-system, C H has the equation 

Ou2 + 2v2 = I or v 2 =! . 
This equation describes a locus consisting of two parallel straight lines 
v = 1/12 and v = 1/12. Thus, here CH consists of two straight lines. We 
can also see this directly by writing (IS) in the form 

(x+y)2=1 or (x+y)2-1=0 

or, equivalently, «x + y) + I)«x + y) - I) = O. So CH consists of the two 
lines x + y + I = 0 and x + y - I = O. 

Thus, in addition to the possibilities of an ellipse, hyperbola, and empty 
locus, noted in Theorem 2.13, CH may consist of two lines. 

Exercise 8. Classify and sketch the curve 2xy - y2 = l. 

Exercise 9. Classify and sketch the curve 4x2 + 2/2 xy + 3y2 = l. 

Exercise 10. Classify and sketch the curve x2 - 2xy + y2 = l. 

The quadratic form H(x, y) = ax2 + 2bxy + C)'2 is called positive definite 
if H(x, y) > 0 whenever (x, y) =1= (0,0). For instance, H(x, y) = 2X2 + 3y2 
is positive definite and H(x, y) = x 2 - y2 is not positive definite. 

Exercise 11. Give conditions on the coefficients a, b, c in order that H(x, y) is 
positive definite. Hint: Make use of formula (11). 

Next, instead of the curve CH with the equation, 

H(x, y) = 1, 

we consider the locus defined by the equation, 

H(x, y) = 0 or ax2 + 2bxy + cy2 = O. (16) 

This locus is not always a curve in the ordinary sense of the word; for 
instance, with a = c = 1, b = 0, we get the equation x2 + y2 = 0, which 
defines a single point, the origin. If a = b = c = 0, then the locus is the 
entire plane. 

If a = 0, equation (16) becomes 

2bxy + cy2 = 0 or y(2bx + c) = O. (17) 

Exercise 12. Describe the locus defined by equation (17). 

If a :F 0, the only point (x, y) that satisfies equation (16), with y = 0, is 
the origin. Let us consider a point (x, y) on the locus defined by (16) with 
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Y #- O. Then, 

We may write H(x, y) = yZp(~), where P(t) = atZ + 2bt + c. If bZ -

ac < 0, then P has no real roots, so P (~) #- 0 and H(x, y) #- O. Hence, in 

this case, the locus consists of the origin. 
If bZ - ac ~ c, the P has real roots t1 , tz, and we can write for all t 

P(t) = a(t - t 1 )(t - tz). Therefore, 

H(X,y)=yZpG)=yZa[~-tlJ[~-tZJ or 

H(x, y) = a(x - tly)(x - tzy)· 

So (x, y) belongs to the locus if and only if x - tly = 0 or x - tzy = O. 
Thus, the locus consists of the two lines with equations: x - tly = 0 and 
x - tzy = O. If tl = tz, the two lines coincide. To sum up, we have the 
locus defined by the equation axz + 2bxy + cyZ = 0 is either a single point, 
(the origin), a pair of straight lines meeting at the origin, a single line 
passing through the origin, or the entire plane. 

Exercise 13. Classify and sketch the following loci: 

(a) x2 - 3y2 = 0, 
(b) xy + y2 = 0, 
(c) x 2 + 2xy + y2 = 0, 
(d) x2 + xy + y2 = O. 

Note: A student who has arrived at this point in the book and who is familiar 
with elementary calculus is now ready to learn one of the applications of linear 
algebra given in Chapter 8, namely, the study of systems of differential equations 
in two dimensions. 



CHAPTER 3.0 

Vector Geometry in 3-Space 

Just as in the plane, we may use vectors to express the analytic geometry of 
3-dimensional space. 

We define a ,.eto, in l-space as a triplet of numbers [~:] written in 

column form, with XI' X 2, and X3 as the/irst, second, and third coordinates. 

We designate tbis vector by a single capital letter X, i.e., we write X - [~:l­
We can picture the vector X as an arrow or directed segment, starting at the 

origin and ending at the point [;:]- We denote by R' the set of all vectors 

in 3-space, and we denote by 1R2 the set of all vectors in the plane. 

We add two vectors by adding their components, so if X - [~:l and 

u- [~}ben 
[
XI + U l ] 

X + U = x2 + U2 • 

X3 + U3 

We multiply a vector by a scalar c by multiplying each of the coordinates 
by c, so 
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We set E, - [H E, - [H and E, - [H and we call these the 1=;, "ctors 

of 3-space. The first coordinate axis is then obtained by taking all multiples 

x,E, - x,[~]- [g]. of E,. and the second and third coordinate axes are 

defined similarly. Any vector X may be expressed uniquely as a sum of 
vectors on the three coordinate axes: 

Geometrically, we may think of X as a diagonal segment in a rectangular 
prism with edges parallel to the coordinate axes (see Fig. 3.1). 

Let X - [~:] and U - [::] be two vectors. What is the geometric 

description of the vector X + U? (see Fig. 3.2). By analogy with the 
situation in Section 2.0, we expect to obtain X + U by moving the segment 
U parallel to itself so that its starting point lands at X, and then taking its 
endpoint. To see that this expectation is correct, we can reason as follows: 
If we move the segment U first in the x-direction by x 1 units, then in the 

Figure 3.1 
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x+u 

Figure 3.2 

y-direction by X2 units, and finally in the z-direction by X3 units, it will at 
all times remain parallel to its original position and in its final position it 
will start at X. If we move the segment V by x I units in the x-direction, its 

[
UI+XI] 

new endpoint is ~~ . Taking the corresponding steps in the y- and 

z-directions, we get U2 + X 2 = U + X for the final position of the end-[
UI + XI] 

U3 + X3 
point. 

By the difference of two vectors X and U, we mean the vector X + (-U), 
which we add to V to get X (see Fig. 3.3). We may think of X + (- U) as 
the vector from the origin which is parallel to the segment from the 
endpoint of U to the endpoint of X and has the same length and direction. 
We often write X - U for the sum X + (- U). 

As in the case of the plane, we can establish the following properties of 
vector addition and scalar multiplication in 3-space: For all vectors X, V, 
A, and all scalars r, s, we have 

(i) X + V = V + X; 
(ii) (X + V) + A = X + (V + A); 

(iii) there is a vector 0 such that X + 0 = X = 0 + X for all X; 
(iv) For any X there is a vector - X such that X + ( - X) = 0; 
(v) r(X + V) = rX + rV; 

(vi) (r + s)(X) = rX + sX; 
(vii) r(sX) = (rs)X; 

(viii) 1· X = X for each X. 
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x 

Figure 3.3 

Each of these properties can be established by referring to the co­
ordinatewise definitions of addition and scalar multiplication. 

If A and B are vectors in 1Il3 and s and I are scalars, the expression 

sA+ IB 
is called a linear combination of A and B. 

As in two dimensions, the vectors A and B in 1Il3 are said to be linearly 
dependent if one is a scalar multiple of the other. A collection of three 
vectors, A, B, C is said to be linearly dependent if one of the vectors is a 
linear combination of the other two vectors. 

ExAMPLE I. U A - [H D - [~:l and C - [H ilien ilie triplet ~ D, Cis 

linearly dependent because 

C = 2A + ( - 1 )B. 

If a collection of vectors is not linearly dependent, it is said to be linearly 
independent. 

ExAMPLE 2. The vector. [H [!]. and [~] are linearly independent mnce it 

o Unp~~ble 00 wrire [~] as '[g] +t[!]. an~ smribrly, for [!] and [H 
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Exercise 1. Prove that the set of three vectors A, B, C is linearly dependent if and 
only if it is possible to find scalars r, s, t not all zero, such that 

rA + sB + tC = O. 
Show that under these conditions we can write one of the vectors as a linear 
combination of the other two and show the converse. 

An extremely useful notion which helps to express many of the ideas of 
the geometry of 3-space is the dot product. We define 

X· U ~ [~:]. [::] ~ x,u, + x,u, + x,u,. 

The dot product of two vectors is a scalar, e.g., 

m . [ _~ } H + H + 3 . ( - 6) ~ - IO. 

We have E,' E, ~ [~] [!] ~ 0 and E, E, ~ [~H~] ~ L SUniiarly, 

E2 . E3 = 0 = E3 . Ep while E2 . E2 = 1 = E3 . E3· 
As in the plane, the dot product behaves somewhat like the ordinary 

product of numbers. We have the distributive property (X + Y)· U = 
X· U + y. U and the commutative property X· U = U· X. Moreover, for 
scalar multiplication, we have (tX) . U = t(X . U). To prove this last state­
ment, note that 

= t(X1U1 + x2u2 + x3u3) = t(X· U). 

The other properties also have straightforward proofs in terms of coordi­
nates. 

By the Pythagorean Theorem in 3-space, the distance from a point 

X ~ [~:] to the origin is Jx; + xl + xl , and we define this number to be 

the length of the vector X, written IXI· For example, [~l ~b69 ~ 13, 

while IE;I = I for each i and 101 = o. 

In general, X . X ~ [~:]. [::] ~ x; + xl + xl, and so this is the square 

of the length IXI of the vector X. Note that for any scalar c, we have 
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leX! = JeX . eX = ~e2X . X = !e!v'X . X = !eIIXI, where lei =.[c2 is the ab­
solute value of the scalar e. We have IXI ~ 0 with IXI = 0 if and only if 
X=O. 

In terms of the notion of dot product, we shall now treat seven basic 
geometric problems: 

(i) To decide when two given vectors X and V are perpendicular. 
(ii) To calculate the angle between two vectors. 

(iii) To find the projection of a given vector on a given line through the 
origin. 

(iv) To find the projection of a given vector on a given plane through the 
origin. 

(v) To compute the distance from a given point to a given plane through 
the origin. 

(vi) To compute the distance from a given point to a given line through 
the origin. 

(vii) To compute the area of the parallelogram formed by two vectors in 
3-space. 

(i) As in the case of the plane, we may use the law of cosines to give an 
interpretation of the dot product in terms of the lengths IXI and IV! of the 
vectors X and V and the angle (J between them. The law of cosines states 

But 

Thus 

IX - VI2 = IXI2 + IVI2 - 2IX!!V! cos(J. 

!X - V!2 = (X - V) . (X - V) = X . X - 2X . V + V . V 

= !X!2 + !V!2 - 2X . V. 

X . V = !XIIV! cos (J. 

The vectors X and V will be perpendicular if and only if cos (J = 0, so if 
and only if X . V = O. 

(ii) If X and V are not perpendicular, we may use the dot product to 

compute the cosme of the angle between X and U. For example, if X ~ [~l 

and u~[~ll' then X'U~(I)(-I)+(2)(I)+(I)(3)~4, IXI~J6, 
!V! =m, so cos(J = 4/[6 m. 

(iii) The projection P(X) of a given vector X to the line of multiples of a 
given vector V is the vector tV such that X - tV is perpendicular to V (see 
Fig. 3.4). This condition enables us to compute I since 0 = (X - IV) . V 
=X·V-(tV)·V=X·V- t(V·V), so t=X·V/V·V and we have a 
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X-tV 

/' P(X) = tV 

Figure 3.4 

formula for the projection: 

( X, V) P(X) = V. V V. (1) 

Note that this is the same as the formula we obtained in the 2-
dimensional case. 

Note also that 

P(X)· V = (( ~:~ )V). V = (~: ~ )(V' V) = X· U. (2) 

(iv) Fix a nonzem vecM U ~ [:il and denote by II the plane thmugh 

the origin which is orthogonal to U. Since Y - [fillies in II if and only if 

y . V = 0, an equation of II is 

(3) 

Let X be a vector. We denote by Q(X) the projection of X on II, i.e., the 
foot of the perpendicular dropped from X to II. Then the segment joining 
X and Q(X) is parallel to U, so for some scalar t, 

X - Q(X) = tV. 

Then X - tV = Q(X). Since Q(X) is in II, X - tV is perpendicular to U. 
Then, by the discussion of (iii), X - Q(X) = P(X) or 

Q(X) = X - P(X). 

(v) The distance from the point X to the plane through the origin 
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perpendicular to V is precisely the length of the projection vector P(X), i.e., 

/
X'V / IX·VI 

IP(X)I = V. V lUi = lUI . 
It follows that the distance d from the point X to the plane through the 

origin perpendicular to V with the equation X1U 1 + XiU2 + x3U3 = 0 is given 
by 

IXIUI + x 2U2 + X3 U31 
d= . 

VUf + u~ + u~ 
(4) 

(vi) The distance from the point X to the line along V with V =1= 0 is the 
length of the difference vector IX - P(X)I. Since X - P(X) is perpendicular 
to P(X), we get IXI2 = IP(X)12 + IX - P(X)1 2, so 

IX - P(XW = IXI2 -IP(XW 

and hence 

(see Fig. 3.5) and so the distance is given by 

(X . V)2 V(X . X)(V . V) - (X . V)2 
X . X - (V. V) = IVI (5) 

(vii) Let A, B be two vectors and let II denote the parallelogram with two 
sides along A and B (see Fig. 3.6). The area of II is the product of the base 

x~ 
/X-P(X)! 

~ 
..-' P(X) 

Figure 3.5 
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A 

Figure 3.6 

IBI, and the altitude on that base which is the distance from A to B. By (5), 

this distance = (l/IBDV(A. A)(B· B) - (A· B)2 ,so 

area II = J(A. A)(B· B) - (A· B)2 . 

§ 1. The Cross Product and Systems of Equations 

Consider a system of two equations in three unknowns: 

alx l + a2x2 + a3x3 = 0, 

bix i + b2X2 + b3X3 = O. 

(6) 

(7) 

[
al] bl [XI] We set A = a2 and B = b2 . A solution vector X = X2 for (7) satisfies 

~ ~ ~ 

A·X=O, B·X=O. 
We may find such an X by multiplying the first equation by b l and the 

second by a l and subtracting 

albix i + a2blx2 + a3blx3 = 0, 

albix i + alb2x2 + a lb3x3 = 0, 

(a2bl - a lb2)x2 + (a3bl - a\b3)x3 = O. (8a) 

Similarly, we may multiply the first equation by b2 and the second by a2 
and subtract to get 

(a lb2 - a2bl)xl + (a3b2 - a2b3)x3 = o. (8b) 
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Figure 3.7 

We can obtain a solution to the system (8a), (8b) by choosing 

Note that if we think of the subscripts 1, 2, 3 on a wheel, with 1 followed 
by 2, followed by 3, and three followed by 1 (see Fig. 3.7), then in (9), x 2 is 
obtained from x I' and X3 is obtained from X 2 by following this succession 
of subscripts of ai' bi . We define the cross product A X B of A and B to be 
the vector 

A X B = a3b l - a l b3 • [
a2b3 - a 3b2j 

a l b2 - a2b l 

The vector X = A X B indeed satisfies the conditions 

A·X=O, B·X=O, 
which we set out to satisfy, and this is so since in the expression 

A· X = al(a2b3 - a3b2) + a2(a3b l - alb3) + a3(a lb2 - a2b l) 

all terms cancel, leaving 0. The same happens for B . X. 

(10) 

We shall see that the cross product is very useful in solving geometric 
problems in 3 dimensions. 

We may easily verify that the cross product has the following properties: 

(i) A X A = 0, for every vector A. 
(ii) B X A = - A X B, for all A, B. 
(iii) A X (B + C) = A X B + A X C, for all A, B, C. 
(iv) (tA) X B = t(A X B) if t is a scalar. 

Exercise 2. Show that E( X E2 = E3, E2 X E3 = E(, and E( X E3 = -E2. 

Exercise 3. Show that A X 8 = - 8 X A. 

Exercise 4. Show that A X (8 + C) = (A X 8) + (A X C). 

Exercise 5. Show that tA X 8 = t(A X 8). 

Exercise 6. Show that A . (8 X C) = 8 . (C X A) = C . (A X 8). 
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We now prove some propositions about the cross product. 

(v). If A and B are linearly dependent, then A X B = O. 

PROOF. If B = 0, then A X B = 0 automatically. If B 1= 0 and A = tB, then 
A X B = (tB) X B = t(B X B) = O. 

(vi). Conversely, if Ax B = 0, then A and B are linearly dependent. 

PROOF. If Ax B = 0, then either B = 0 or at least one of the components of 
B is nonzero. Assume b3 1= O. Then a3b2 - a2b3 = 0, so a2 = (a31 b3)b2 and 
- a3b l + a l b3 = 0, so a l = (a3Ib3)b l • It follows that 

A = I::] = [~::~ ::~::] = (a31 b3) I::] = (a31 b3)B. 
a3 (a31 b3)b3 b3 

Therefore, A is a scalar multiple of B, so A and B are linearly dependent. 
We reason similarly if b2 1= 0 or b l 1= O. 

Exercise 7. If A, B, C are linearly dependent, show that A . (B X C) = B . (C X A) 
= C . (A X B) = O. 

(vii). Let II denote the parallelogram in 1R3 with sides along A and B, where 
B 1= 0 (see Fig. 3.8). Then 

area II = IA X BI. (11) 

PROOF. We have already found formula (6) for the area II: 

area II = ~(A . A)(B . B) - (A . B)2 . 

Figure 3.8 
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In coordinates, this gives 

(area 11)2 = (ai + ai + an( bi + bi + bn - (alb l + a2b2 + a3b3)2 

= aib? + a?bi + a?b~ - (a lbl)2- 2a lbla2b2 

+ aibi + aibi + aib~ - (a2b2)2 - 2albla3b3 

+ a~b? + a~bi + a~b~ - (a3b3)2 - 2a2b2a3b3 

= (a,b2 - a2bl)2+ (a3bl - a(b3)2+ (a2b3 - a3b2)2 

= IA X B12. 

This establishes formula (11). 
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Observe that if A and B are linearly dependent, then the parallelogram 11 
will be contained in a line so its area will be 0, agreeing with the fact that 
A X B = 0 in this case. 

Let us now summarize what we have found. 
If A and B are not linearly dependent, then we may describe the vector 

A X B by saying that it is perpendicular to A and B and it has length equal 
to the area of the parallelogram determined by A and B. Note that this 
description applies equally well to two vectors, A X Band - (A X B) lying 
on opposite sides of the plane containing A and B. 

In Chapter 3.5 we will go more deeply into the significance of the sign of 
AxB. 

Next, we shall give a generalization of the Pythagorean Theorem. If we 

project A and B ;nto the x,x, plane, we get the vecto" [~l and [; l Note 

that the area of the parallelogram 1112 determined by these two vectors is 
given by 

[~l X [~l [a,b, L,b.l ~ la,b, - a,b,I 
Similarly, the area of the parallelogram 1123 determined by the projections 

[:: 1 and [:: 1 of A and B to the x ,x, plane ;s g;ven by acea (IT,,) ~ 
la3b2 - a2b31, and finally area 1113 = la3bl - alb31 (see Fig. 3.9). 

Formula (vii) thus yields the following striking result which is a general­
ization of the Pythagorean Theorem: 

(viii) (area 11/= (area11d2+ (area 1123)2 + (area 1113f 

This is the analogue of the theorem that the square of the length of a 
vector is the sum of the squares of its projections to the three coordinate 
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Figure 3.9 

axes (see Fig. 3.10): 
(ix) Given three vectors A, B, C in 3-space, we shall next obtain a 

formula for the volume of the parallelepiped determined by these three 
vectors. 

If A and B are linearly independent, then the distance from the vector C 
to the plane determined by A and B equals the length of the projection of C 
to the line along A X B, since the vector A X B is orthogonal to that plane. 

X. I-T------------=ar X = (~;) 

Figure 3.10 
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So the distance is given by 
Ie· (A x B)I 

IAXBI 

111 

(12) 

(x) It follows that the volume of the parallelepiped IT. w~th sides alon~ A, 
B, and e is given by the area of the base IA X BI mulhphed by the height 
Ie· (A x B)I/IA x BI, i.e., 

volume IT = Ie· (A x B)I. (13) 

If A, B, and e are linearly dependent, then the parallelepiped is con­
tained in a plane so its volume will be zero, which agrees with the fact that 
'e . (A X B) = 0 in such a case, as we saw in Exercise 7. 

We shall next see how the cross product helps us to study systems of 
linear equations. 

We consider a system of three equations in the three unknowns x \' x 2 , 

X3: 
a\x\ + a2x2 + a3x3 = 0, 

b\x\ + b2x 2 + b3X3 = 0, 

c\x\ + C2X2 + C3X3 = o. 
( 14) 

We ,et A ~ [::]. B ~ [::]. c ~ [H The Wllltioll' X ~ [~:l of the ,ystem 

(14) are the vectors X such that X is perpendicular to the three vectors A, B, 
C. We shall show the following: 

(xi). There exists a nonzero solution vector X of (14) if and only if 
e· (A X B) = o. 
PROOF. Assume that e· (A X B) = O. If A and B are linearly dependent, 
there is some plane IT through the origin which contains A, B, and e. We 
choose a nonzero vector X perpendicular to IT. Then X . A = 0, X . B = 0, 
X· e = 0, so X is a solution of (14). 

If A and B are linearly independent, then A X B =1= o. By assumption, 
(A X B) . e = O. Also (A X B) . A = 0 and (A X B) . B = O. So A X B is a 
nonzero solution of (14). 

Conversely, assume that e· (A X B) =1= O. Then A and B are linearly 
independent, since otherwise A X B = 0 and so e . (A X B) = 0, contrary to 
assumption. Let IT be the plane through the origin containing A and B. 
Then A X B is perpendicular to IT, and every vector perpendicular to IT 
is a scalar multiple of Ax B. If X is a solution of (14), it follows that X = 
t(A X B) for some scalar t. Since X· e = 0, (t(A X B)) . C = t«A X B) . C) 
= 0, and so t = O. Hence, X = 0 as claimed. 

The following is a fundamental property of the geometry of \R3• 
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Proposition 1. If A, B, C are three linearly independent vectors in IRJ , then 
every vector Y in IRJ can be uniquely expressed as a linear combination of A, 
B, and C. 

PROOF. Since C is not a linear combination of A and B, the line {Y - tC It 
real} which goes through Y and is parallel to C will not be parallel to the 
plane determined by A and B. Thus, for some t, Y - tC lies in that plane 
and so 

Y- tC= rA+ sB 

for suitable scalars r, s. Therefore, 

Y = rA + sB + te. 
Expression (15) is unique, for if 

Y = r' A + s'B + t'C, 

then rA + sB + tC = r'A + s'B + t'C, so 

(r - r')A + (s - s')B + (t - t')C = o. 

(15) 

Since A, B, C are linearly independent, it follows that r - r' = 0, s - s' = 0, 
t - t' = 0. So the expression (15) is unique, as claimed. 

The vectors of length 1 are called unit vectors, and their endpoints form 
the unit sphere in 3-space. 

Exercise 8. Show that for any choice of angles 8, cp, the vector [~::;~~::l is a unit 
smcp 

vector. Conversely, show that if I = Uf + u~ + uj and if UJ * 0, then it is possible to 

find an angle cp between -.,,/2 and .,,/2 so that UJ = sin cp. The vector (~) then 

has length ~uf + u~ = ~I - uj = Vi - sin2q,. = cosq" so we may write 

UI = cosq, cos 8, U2 = coscp sin 8 

for some 8 between 0 and 2.". Hence (:~) = [~~:;~~::l' 
UJ smcp 

It follows that any nonzero vector X in IRJ may be written: 

X = IXI [~::;~~::l' 
smcp 

for some choice of angles cp, 8. 
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Transformations of 3-Space 

As in the planar case, we define a transformation of 3-space to be a rule T 
which assigns to every vector X of 3-space some vector T(X) of 3-space. 
The vector T(X) is called the image of X under T, and the collection of all 
vectors which are images of vectors under the transformation T is called the 
range of T. We denote transformations by capital letters, such as A, B, R, 
S, T, etc. 

EXAMPLE l. Let P denote the transformation which assigns to each vector 

X - [~:l the projection to the line along U - [ll By formula (I) of 

Chapter 3.0, we have 

EXAMPLE 2. Let S denote the transformation which assigns to each vector X 

the "fleenon of X thmugh the line along U - [n As in the planar case, 

S(X) is defined by the condition that the midpoint of the segment between 
X and S(X) is the projection of X to the line along U. Thus 

SeX) = 2P(X) - X 
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or 

Exercise 1. In each of the following problems, let P denote projection to the line 

along U. Find a formula for the coordinates of the image p( ~~). 

(a) U = (~) (so we have projection to the first coordinate axis); 

(b) U =(1); 
(c) U=( _: J; 
(d)U=U) 
Exercise 2. For each of the vectors in the preceding exercise, find a formula for the 

reflection s( ~D of the vector (~D through the line along U. 

EXAMPLE 3. Let i2 denote projection to the x2x3-plane and let P denote 
projection to the xI-axis. Then 

Note that i2(X) + P(X) = X for each X. 

EXAMPLE 4. Let Q denote projection to the plane through 0 perpendicular 

to U ~ [l] and let P denote pmjection to the line along U ~ [lJ. Then, as 

in Example 3, we have Q(X) + P(X) = X, so by the formula in Example 1, 

we have 
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Exercise 3. For each of the vectors U of Exercise I, let Q denote projection to the 

plane perpendicular to U. Find the formula for Q( ~~) in terms of the coordinates 

ofx=UD· 
EXAMPLE 5. Let IT denote the plane through the origin perpendicular to 

U - [n Let R denote reflection through the plane n. For any vector X, 

the midpoint of the segment joining X to R(X) is the projection Q(X) of X 
to the plane IT. Therefore, 

R(X) = 2Q(X) - X 

where Q is the projection in Example 4. Therefore, 

Exercise 4. For each of the vectors U in Exercise I, let R denote reflection through 

the plane through the origin perpendicular to U. Find the formula for R(;~) in 

terms of the coordinates of X = ( ~: ). 

EXAMPLE 6. Let Dr denote the transformation which sends any vector into t 
times itself, where t is some fixed scalar number. Then 

Dr(X) = tX, 

so 

Dr [::] = t [::] = [:::]. 
X3 X3 tX3 

As in the planar case, we call Dr the stretching by t. 
If t = 0, then Do(X) = 0 . X = 0 for all X so Do is the zero transformation, 

denoted by O. If t = 1, then DI(X) = 1 . X = X for all X, so DI is the identity 
transformation denoted by [. 

EXAMPLE 7. For a fixed scalar (} with 0 " (} < 2'1T, we define a rotation Rol 

of (} radians about the xI-axis. This rotation leaves the XI component fixed 
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and rotates in the x2x3-plane according to the rule for rotating in 2-
dimensional space, i.e., 

F or example, 

and 

Exercise 5. In terms of the coordinates of X = (;~), calculate the images of 

(a) R;(X), 
(b) R';/4(X), and 
(c) R ~"./lX). 

EXAMPLE 8. In a similar way, we may define rotations R,l and Ri by () 
radians about the x2-axis and the xJ"axis. We have the formulas 

2 [XI]_ [ (COS())XI + (Sin())X3] 
Re X2 - X 2 

X3 (-sin())x l + (COS())X3 

and 

R{} [~;::i::~ (~:::~::l 
Note that the algebraic signs for R,l are different from those of Rei and Ri· 

Exercise 6. Calculate the images 

(a) R;(X), 
(b) R;/4(X), 
(c) R;/z(R;/z(X», 
(d) R.,;/z(R;/iX». 



CHAPTER 3.2 

Linear Transformations and Matrices 

In Chapter 3.1 we examined a number of transformations T of 3-space, all 

of which have the pmperty tha~ in tenns of the coordinates of X = [:: l 
the coordinates of T(X) are given by linear functions of these coordinates. 
In each case the formulae are of the following type: 

T[::] = [:::: : ::::: ::::]. 
X3 CtX t + C2X 2 + C3X3 

Any transformation of this form is called a linear transformation of 
3-space. The expression 

[
at a2 a3 ] 

ht h2 h3 
Ct C2 C3 

is called the matrix of the transformation T and is denoted by m(T). 
We can now list the matrices of the linear transformations in Examples 

1-8 in Chapter 3.1. 

m(P) = [1 
1 

H 
3 

1 
3 

1 
3 

(1) 

m(S) = [~:l 
1 q 3 

_1 
3 

1 -1 
3 3 

(2) 
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m(Q)~ [~ 0 n 1 
0 

2 _1 

-11 "3 3 

m(Q)= _1 I _1 
3 3 3 ' 

_1 _1 I 
3 3 3 

1 -1 _1 
3 3 3 

meR) = -I 1 _1 
3 3 3 , 

-1 -1 1 
3 3 3 

m(D')~[~ 0 n t 
0 

0 
m(R.') ~ [~ cosO -~nol 

sin 0 cosO 

[ co,O 0 'inO} m(Rl) = 1 
- sinO 0 cosO 

[COSO - sin 0 n m( RJ ) = si~O cosO 
0 

We will denote by id, (read identity), the matrix m(/) = [b ~ ~l. 
001 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

As in the plane, if T is a linear transformation with matrix m(T) 

= [:: :~ ::], then we write 
C\ Cz C3 

(9) 

and we say that the matrix m(T) ac" on Ihe 'eeloc [;i] to yield the veeto< 

[
a\x\ + azxz + a3X3] 
b\x\ + bzxz + b3X3 . 
c\x\ + czxz + c3X3 
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EXAMPLE 1. 

EXAMPLE 2. 

2 3 

456 

789 

1+2+3 
4+5+6 
7+8+9 

0-2+3 
0-5+6 
0-8+9 

119 

We now prove two crucial properties of linear transformations which 

show how they act on sums and seal., pmducts of vectms. If X ~ [;: land 

y ~ [f:} then 

[~: ~: ~:][[~:l + [~:ll ~ [~: !: m[;::f:J 

[
a l 

Thus, for the associated transformation T with m(T) = hI 
CI 
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have 

T(X + Y) = T(X) + T(Y). (lOa) 

Similarly, we may show that 

T(rX) = rT(X) (lOb) 

for any scalar r. 

Exercise 1. Prove the statement (lOb). 

Conversely, if T is a transformation such that T(X + Y) = T(X) + T(Y) 
and T(rX) = rT(X) for all vectors X, Y and scalars r, then we may show 

that the coo,dinates of T[~:l'" given by a set of linear equations in the 

coo,dinates of X - [~: l Specifically, 

T[;:l- T[[~ 1 + [;1+ [~Jl 
-+[gl + x'[~l + x,[?ll 
- x,T[gl + X,T[ij + x,T[H 

Let T[~l- [;; l T[!l- m]' T[~l- [;: J. Then 

T [;;]- x, [ ;;] + x, [;:] + x, [ m 
= [::::] + [::::] + [::::] 

CtXt C2X2 C3X 3 

[
atx t + a2x2 + a3X3] 

= btx t + b2x2 + b3X 3 

CtX t + C2X2 + C3X 3 

as predicted. In summary, we have: 
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Theorem 3.1. Let T be a transformation of 3-space. Then T is a linear 
transformation if and only if T satisfies the conditions 

T(X + Y) = T(X) + T(Y) 

and 

T(rX) = rT(X) 

for all vectors X and Y and all scalars r. 

Let T be a linear transformation of 1R3. Let L be a straight line in 1R3. By 
the image of Lunder T, we mean the collection of vectors T(X) for all 
vectors X with endpoint lying on L. If II is a plane, we define the image of 
II under T in a similar way. 

Theorem 3.2. Let T be a linear transformation of 1R3. The image of a straight 
line Lunder T is either a straight line or a point. The image of a plane II 
under T is either a plane, a straight line, or a point. The image of 1R3 under T 
is either 1R3, a plane, a straight line, or a pOint. 

The proof proceeds in exact analogy with the proof in dimension 2 (proof 
of Theorem 2.2 in Chapter 2.2). 

Exercise 2. Describe the images of a line L = {A + tV I t real} under a linear 
transformation T. 

Exercise 3. Let T be a linear transformation. Let II be the plane {C + tV + sV It, s 
real}, where V and V are linearly independent. Show that the image of II under Tis 
the collection of vectors T(C) + tT(V) + sT(V). Vnder what conditions will the 
image be a single point? When will the image be a line? 

Exercise 4. The image under T of 1R3 = {xIEI + X2E2 + X3E31 XI' x2' x3 real} is 
{XI T(EI) + X2T(E2) + X3T(E3)}' Under what conditions on T(EI), T(E2). and 
T(E3) is this all of 1R3? 



CHAPTER 3.3 

Sums and Products of Linear 
Transformations 

If T and S are linear transformations, then we may define a new transfor­
mation T + S by the condition 

(T + S)(X) = T(X) + SeX) for every vector X. 

Then by definition, (T + S)(X + Y) = T(X + Y) + S(X + V), and since T 
and S are linear transformations, this equals T(X) + T(Y) + S(X) + S(Y) 
= T(X) + S(X) + T(Y) + S(Y) = (T + S)(X) + (T + S)(Y). Thus for ev­
ery pair X, Y, we have 

(T + S)(X + Y) = (T + S)(X) + (T + S)(Y). 

Similarly, we may show 

(T+ S)(tX) = t(T+ S)(X). 

Therefore, by Theorem 3.1, T + S is a linear transformation. It is called the 
sum of the transformations T and S. 

[
all al2 al3] 

If the matrix of T is m(T) = a21 a22 a23 and the matrix of S is 
a31 a32 a33 

[
bll bl2 b13] 

m(S) = b21 b22 b23 , then we may calculate the matrix m(T + S) of 

b31 b32 b33 
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T + S as follows: 

XI [XI 
= T X2 + S X 2 

X3 X3 

[
alIXI + a12x2 + a13X3] [bllXI + b l2 X 2 + b13X 3 

= a 21 x I + a 22x 2 + a23x3 + b21 x I + b 22x 2 + b 23 X 3 

a 31 x I + a 32x 2 + a33x3 b31 x I + b 32x 2 + b 33X 3 

[
(all + bll)x l +(a I2 + b 12)x2 + (al3 + b 13 )X3] 

= (a21 + b 21 )x I + (a22 + b 22)X2 + (a23 + b23)X3 

(a31 + b 31 )xl + (a32 + b 32)X2 + (a33 + b 33 )X3 

a12 + b l2 a l3 + bl3 XI] 
a 22 + b 22 a 23 + b23 X 2 . 

a32 + b32 a 33 + b 33 X3 

123 

Thus the matrix for the sum of two linear transformations is just the matrix 
formed by adding the corresponding entries in the matrices of the two 
linear transformations. 

We define matrix addition componentwise by the formula: 

[au a l2 aB
] [bU 

bl2 bB ] [au + bu a l2 + bl2 a 13 + bl3 
a 21 a22 a23 + b 21 b 22 b23 = a21 + b 21 a 22 + b 22 a 23 + b 23 

a 31 a 32 a 33 b 31 b 32 b 33 a 31 + b 31 a 32 + b32 a 33 + b 33 

(1) 

Therefore we may write the matrix of T + S as the sum of the matrices 
of T and S: 

m(T+ S) = m(T) + m(S). (2) 

Exercise 1. For any linear transformation T and any scalar I, we define a new 
transformation IT by the condition: (IT)(X) = IT(X) for all X. Show that IT is 
a linear transformation by showing that (IT)(X + Y) = (tT)(X) + (IT)(Y) and 
(tT)(sX) = S(IT)(X) for any vectors X, Y and any scalar s. For any matrix, we 
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define the product of the matrix by the scalar t to be the matrix whose entries are 
all multiplied by t, i.e., 

(3) 

Show that m(tT) = tm(T). 

EXAMPLE 1. We may use the above ideas to calculate the matrices of some 
of the transformations we used in Chapter 3.2, e.g., if S is reflection in the 
xraxis and T is projection to the x3-axis, then S = 2T - I, so 

m(S) = m(2T- I) = m(2T) - m(l) = 2m(T) - m(l) 

[0 0 0] [1 0 0] [-1 =2000 - 010 = 0 
001001 0 

o 0] 
- 1 O· 
o 1 

As in the case of the plane, we may define the product of two linear 
transformations T and S to be the transformation R given by R(X) 
= S(T(X». 

We write R = ST, and we call R the product of Sand T. 

EXAMPLE 2. Let K be reflection in the x IX2-plane and J be reflection in the 
x2xrplane. Then 

[XI] [-XI] [-XI] [-XI] 
J ~: =~: and K(J(X» = K ~~ = :~3' 

[ XI] [-XI] Also, J(K(X» = J x 2 = X2 ,so KJ = JK. 
-X3 -X3 

Exercise 2. Show that if Sand T are any linear transformations, then ST and TS 
are linear transformation, using Theorem 3.1. 

EXAMPLE 3. Let P be projection to the x l x2-plane and let Q be projec­

tion to the x,x,-plane. Describe PQ and QP. We find PQ[~:]-
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Exercise 3. Let R denote projection to the x3-axis and let P denote projection to the 

xlx2"plane. Find RP and PRo 

ExAM~ 4. Fmd PP. Since pp[::] = p[p[::Jl - p[~]- [~l TheY.-

fore, PP(X) = P(X) for all X, so we have PP = P. 

Exercise 4. Show that RR = Rand QQ = Q, where Rand Q are as above. 

EXAMPLE 5. Find KQ and QK, when K and Q are the transformations 
defined in Examples 2 and 3. We have 

Thus KQ= QK. 

Exercise 5. Find KP and PK, and RK and KR, where K, P, and R are the 
transformations in Examples 2, 3, and 4. 

EXAMPLE 6. Let S be a linear transformation and let I denote the identity 
transformation. Find SI and IS. For each X, we have S/(X) = S(X) and 
IS(X) = I(S(X» = S(X). Thus SI = S = IS. 

If T and S are linear transformations with matrices 

then we know that TS is also a linear transformation, so we may calculate 
its matrix as follows. To find the first column of m(TS), we must find the 

[
bll] image of EI , i.e., TS(E1) = T,S(EI», where S(EI) = b21 . Thus 

b31 

[
all al2 aI3 ][b ll ] [allb ll + al2b21 + al3b31] 

T(S(EI)) = a21 a22 a23 b21 = a21 bll + a22b21 + a23b31 . 

a31 a32 a33 b31 a31 bll + a32b21 + a33b31 

Similarly, we may find the second column of m(TS) by computing 
T(S(E2» and the third column of m(TS) by computing T(S(E3»' 

We define the product of the two matrices m(T) and m(S) to be the 
matrix m(TS) of the product transformation TS. Thus m(T)m(S) = 
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m(TS) or 

_[allbll + a 12b 21 + a\3b31 

- a 21 b ll + a 22b 21 + a 23b 31 

a 31 b ll + a 32b 21 + a 33b 31 

a ll b 12 + a 12b 22 + a 13b 32 allb 13 + a 12b 23 + a 13b 33 ] 

a21 b 12 + a22b 22 + a 23b 32 a21 b \3 + a22b 23 + a 23b 33 • 

a31 b 12 + a32b 22 + a 33b 32 a31 b l3 + a 32b 23 + a 33b 33 

EXAMPLE 7. II m(T) -~! ~ ~l and m(S) - [~ i mJ. ilien 

and 

m(T)m(S) 

[
2 . 1 + 1 . 2 + 2 . 1 2· 1 + 1 . 3 + 2 . 3 2· 2 + 1 . 1 + 2 . Il 

= 1· 1 + 3 ·2+ 1 . 1 1· 1 + 3 ·3+ 1 ·3 11·2 + 3 . 1 + 1 . 11 
3·1+1·2+4·1 3·1+1·3+4·33·2+1·1+4·1 

-[! li I~J 

m(S)m(T) = ~~ ~ ill[i ~ 
rl 3 l~ 3 1 

Note that m(TS) =!= m(ST) in this case. 

(4) 

When computing the product of matrices in the 3-dimensional case, we 
find that each entry is the dot product of a row of the first matrix with a 
column of the second. The entry in the second row, third column, of 
m(T)m(S) is given by the dot product of the second row of m(T) with the 
third column of m(S). We indicate this entry in the examples above. 

Exercise 6. Calculate the products of the following matrices: 

(2 I 0)(7 0 I) 033 Ill, 
021 2 I 2 

( 3 0 0)(2 0 6) 010 Ill, 
003 132 

Exercise 7. Each of the transformations J, K, P, Q, R of Examples 1,2, and 3 has 
the property that the transformation equals its own square, i.e., JJ = J. Verify that 
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m(J) . m(J) = m(J), and verify that each of the matrices of the other linear 
transformations equals its own square. 

Exercise 8. Since PR = 0 as linear transformations, it follows that m(PR) 

= m(O) =(g g g). Verify that m(P)m(R) = 0 = m(R)m(P). 
000 

Exercise 9. Show that (~ g 6) has cube = id but a square =F id. Describe the 
010 

linear transformation with this matrix. 

As in the 2-dimensional case, the distributive law of matrix multiplication 
over matrix addition is a consequence of this law for linear transformations. 
The same is true for the associative laws of matrix multiplication and 
matrix addition. Thus 

(m(T)m(S))m(R) = m(TS)m(R) = m(TS)R) = m(T(SR)) 

= m(T)m(SR) = m(T)(m(S)m(R)), (5) 

m(T)m(S) + m(T)m(R) = m(TS) + m(TR) = m(TS + TR) 

= m(T(S + R)) = m(T)m(S + R) 

= m(T)(m(S) + m(R)). (6) 

Exercise 10. Let U be a unit vector with coordinates (~~). Show that the projec-

ut UZUl U3Ul 

tion P to the line along U has the matrix 

Exercise 11. Show that the matrix for the reflection R through the line along U is 

l2Ut - 1 

m(R) = 2UlUZ 

2UlU3 2UZU3 

l/ff 

EXAMPLE 8. If U = 1/ ff ' then, defining P and R as in Exercises 10 

l/ff 
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and 11, 

m(P) - [l 
while 

1 
3 

1 
3 

t 
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m(R)=2m(P)-m(l)=t 2 I 2· [I 2 2] 
222 

Exercise 12. Find the matrices of projection to the line along U = ! ( ~) and of 

reflection through this line. 

§ 1. Elementary Matrices and Diagonal Matrices 

As in the 2 X 2 case, there are certain simple 3 X 3 matrices from which we 
can build up an arbitrary matrix. We consider matrices of three types: 
shear matrices, permutation matrices, and diagonal matrices. 

(I) Shear Matrices: For i '* j, let eij = matrix with all l's on the diagonal 
and s in the i, j position and 0 otherwise. For example, 

[
1 s 0] 

el2 = 0 1 0, 
001 

[1 0 0] 
el3 = 0 1 s· 

001 

(2) Permutation Matrices: Pij = matrix which is obtained from the identity 
by interchanging the i'th and j'th rows and leaving the remaining row 
unchanged. For example, 

[0 0 1] 
PI3 = 0 1 0, 

1 0 0 
[1 0 0] 

P23=0 01· 
010 

A matrix of one of these types is called an elementary matrix. If e is an 
elementary matrix and m is any given matrix, it is easy to describe the 
matrices em and me. 

In the following discussion, we set 
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EXAMPLE 9. 

e21m = [o! ~ ~][:: :: ::] = [sa,a~ bl sa2a~ b2 sa3
a
: b3 ], 

o I C, C2 c3 CI C2 c3 

We see that e21 m is the matrix we get, starting with m, by adding s times 
the first row of m to the second row of m and leaving the other rows alone. 

Exercise 13. Show that ehm is the matrix obtained from m by adding s times the 
second row to the first row and leaving the other rows alone. 

EXAMPLE 10. 

me2, = [:: :: ::] [! ~ ~] = [:: : ::: :: ::], 
c i C2 C3 0 0 I c i + SC2 C2 C3 

which is the matrix obtained from m by adding s times the second column 
to the first column and leaving the other columns alone. 

Exercise 14. Describe the matrix met3. 

The preceding calculations work in all cases, and so we have: 

Proposition 1. For each i, j with i =1= j, eijm is the matrix obtained from m by 
adding s times the j'th row to the i'th row of m and leaving the other rows 
alone. Also, meij is the matrix obtained from m by adding s times the i'th 
column to the j'th column. 

[I 0 0] 
Note: Recall that id = 0 I 0, so eijid = eij. 

o 0 I 
Thus we can instantly remember what multiplication by eij does to an 

arbitrary matrix by thinking of eij itself a[; th; r~s]ult of multiplying the 

identity matrix by eij. For instance, e31 = 0 I 0, so the product e3,id 
sOl 

= the matrix obtained by adding s times the first row of the identity to its 
last row. Hence, this is what multiplication by e3' does to any matrix: it 
adds s times the first row to the last row. 

EXAMPLE 11. 

o 1] [a, a2 a3] [C, C2 C3] 
lObi b2 b3 = b, b2 b3 . 
o 0 CI C2 c3 a, a2 a3 

Thus Pl3m is the matrix obtained from m by interchanging the first and last 
rows and leaving the second row alone. 
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Exercise 15. Show that mp13 is the matrix obtained by interchanging the first and 
third columns of m and leaving the second column alone. 

For every permutation matrix Pi}' the situation is similar to that we have 
just found; so we have: 

Proposition 2. For each i,j with i =1= j, pi}m is the matrix obtained from m by 
interchanging the i'th and j'th rows, and mpi} is the matrix obtained from m 
by interchanging the i'th and j' th columns. 

Again, to remember how Pi} acts on an arbitrary matrix m, we need only 
look at Pi} and remember that Pi} = pi}id. 

tl 0 0 

We call a matrix 0 t2 0 a diagonal matrix. 

o 0 t3 

t I 0 0 

EXAMPLE 12. Let d = 0 t2 0 

0 0 t3 

t I 0 0 a l a2 a3 [t,a, 
dm= 0 t2 0 b l b2 b3 = t2b l 

0 0 t3 C I C2 C3 t3c I 

t la2 
t2b2 

t3c2 

Exercise 16. With d as in the preceding example, calculate md. 

t la3 
t2b3 

t3c3 

By the same calculation as in Example 12 and Exercise 16, we find: 

Proposition 3. If d is any diagonal matrix, dm is the matrix obtained from m 
by multiplying the i'th row of m by ti for each i, where ti is the entry in d in 
the (i, i)-position. Also, md is obtained in a similar way, the i'th column of m 
being multiplied by ti. 

Exercise 17. 

(a) Show that (PI2)2 = id and similarly for P13 and P23' 

(b) Show that PI2P23 =F P23PI2' 

Exercise 18. Show that if 

~ ~ land ds = [~ 
o t3 0 

then dsd, = d,ds' 
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Exercise 19. Calculate the following matrices: 

(a) m =U 0 

~)(~ o O)C 0 0) 1 5 0 0 I 0 , 
0 o 6 0 t 0 

(b) m =U ° n(~ o O)C 0 1) 0 -2 0 0 I 0 . 
I o 0 I 0 0 

By multiplying elementary matrices together, several at a time, we can 
build up all matrices. 

Theorem 3.3. Let m be a 3 X 3 matrix. We can find a diagonal matrix d and 
elementary matrices e le2, ••• , en and fl' ... ,fm so that 

m = ele2' .. endft!2' . . fm. 

We shall give the proof of this theorem in the next chapter. 
Figures 3.11a-1 indicate the effects of elementary transformations, diag­

onal matrices, and projections. Figure 3.11a shows the identity transfor­
mation I; Figure 3.11b shows the matrix with diagonal entries 2,1, and 1; 
Figure 3.11c shows the matrix with diagonal entries 1, 2, and 1; Figure 
3.11d shows the matrix with diagonal entries 2, 2, and 1; Figure 3.11e 
shows the shear transformation mi3; Figure 3.1H shows the matrix with 
diagonal entries 1, 1, and 2; Figure 3.11g shows the matrix with diagonal 
entries -1, -1, and 1; Figure 3.11h shows the shear transformation miL 
Figure 3.11i shows the matrix with diagonal entries -1, -1, and -1; 
Figure 3.11j shows the matrix with diagonal entries 1, -1, and -1; 
Figure 3.11k shows the shear mtz; and Figure 3.111 shows the projection 
given by the diagonal matrix with entries 1, 1, and O. 

(a) (b) 

Figure 3.11 



(c) 
(d) 

1\ /\ 
~ , 

\ 
(e) f\ 

(e) 

(g) 
(h) 

(i) (j) 

(k) (I) 



CHAPTER 3.4 

Inverses and Systems of Equations 

Let T be a linear transformation of 1R3. As in the case of two dimensions, 
we say that the linear transformation S is an inverse of T if 

ST= I and TS = I. (I) 

Can a linear transformation have more than one inverse? The answer is 
no and the proof is the same as in 1R2. (See Chapter 2.4, page 52.) 

EXAMPLE 1. If t =1= 0, then DIll is the inverse of D, . 

EXAMPLE 2. The inverse of ROI, rotation by () radians around the xl-axis, 
then, is R:o = Ri.,-o. 

EXAMPLE 3. Let A be the transformation with matrix 0 2 O. The trans-[I 0 0] 
003 

formation B with matrix 0 ! 0 is the inverse of A, because [1 0 0] 
o 0 t 

AB r::] = Af r~ ~ ~]l::]l = Af r t ::]1 = r~ ~ ~]r: ::] = I::]' 
l X3 II 0 0 t X3 J II t X3 J lo 0 3 l3 X3 X3 

so AB = I, and, similarly, BA = I. 

EXAMPLE 4. Let 'IT be a plane and let P be projection on the plane 'IT • We 
claim P does not have an inverse, and we shall give two proofs for this 
statement. 
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Suppose Q is a transformation satisfying PQ = QP = I. 

(a) Choose a vector X which is not in the plane 'fT. Then X = leX) = PQ(X) 
= P( Q(X». 

But X is not in 'fT, while P( Q(X» is in 'fT, so we have a contradiction. 
Thus, no such Q exists. 

(b) Choose a vector X =F 0 with X.l 'fT. Then P(X) = 0, and so Q(P(X» = O. 
Thus X = leX) = Q(P(X» = o. This is a contradiction. Therefore, no 
such Q exists. 

EXAMPLE 5. Let T have matrix 

[ b ~ 1 _0 1]. 

- 1 0 1 

W, claim T h., no inv"". Suppo" S sati,fic:s ST ~ TS ~ I. Let X ~ [~;] 
b, a v''':to, in R'. Sot SeX) ~ [~il Th,n x, 

X ~ I(X) ~ T(S (X )) ~ T[m 

= [ b 
- 1 

- 1 0] [Yl] [Yl - Y2] 1 - 1 Y2 = Y2 - Y3 . 
o 1 Y3 - Yl + Y3 

Since (Yl - Y2) + (Y2 - Y3) + (-Yl + Y3) = 0, X lies on the plane: Xl + 
x 2 + X3 = O. Thus every vector in 1R3 lies on this plane. This is false, so S 
does not exist, and the claim is proved. 

Exercise 1. Find an inverse for the transformation T which reflects each vector in 
the plane X3 = O. 

Exercise 2. Find conditions on the numbers a, b, c so that the transformation T 
with matrix 

(
a 0 0) o b 0 
o 0 c 

has an inverse S. Calculate S when it exists. 

Exercise 3. Find an inverse S for the transformation T whose matrix is 
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Exercise 4. Find an inverse S for the transformation with matrix (~ ~ ~). 
b 

Exercise 5. Show that the transformation T with· matrix (:a 
3a 

2b {c) has no 
3b 3c 

inverse for any values of a, b, c. 

Exercise 6. Show that the transformation T with matrix [ ~ 
a+d 

b 
e 

b+e 
f ]h" 

c+f 
no inverse for any values of a, b, c, d, e,j. 

Exercise 7. Let T be the transformation with matrix [~: ~~ ~:l· Suppose that 
c, C2 C3 

there exist scalars I" 12 , 13 , not all 0, such that 

(a) Show that there is a plane 'fT such that for every vector X, T(X) lies in 'fT. 

(b) Conclude that T has no inverse. 

Let T be a linear transformation of 1R3. For a given vector Y, we may try 
to solve the equation 

T(X) = Y 

by some vector X. Suppose S is an inverse of T. Then 

T(S(Y)) = TS(Y) = I(Y) = Y, 

so X = S(Y) solves (2). 
Now let X be a solution of (2). Then 

S(Y) = S(T(X») = ST(X) = I(X) = X. 

So S(Y) is the only solution of (2). 

(I) 

We have shown: if T has an inverse, then Eq. (2) has exactly one solution 
X for each given Y. 

Conversely, let T be a linear transformation which has the property that 
Eq. (2) possesses exactly one solution for each Y. We shall show that it 
follows that T has an inverse. 

Denote by S(Y) the solution of (2). Then T(S(Y» = Y, and if T(X) = Y, 
then X = S(Y). We have thus defined a transformation S which sends each 
vector Y into S(Y). By the definition of S, TS(Y) = T(S(Y» = Y, for each 
Yin 1R3. So TS = I. Also, if X is any vector, set Y = T(X). Then X = S(Y), 
by the definition of S, and so X = S(T(X» = ST(X). Hence I = ST. Thus 
we have shown that S is an inverse of T. 

Our conscience should bother us about one point. S is a transformation 
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of 1Il3; but is it a linear transformation? To answer this question, choose two 
vectors, X and Y. 

T(S(X) + S(Y») = T(S(X») + T(S(Y» (since Tis linear) 

= TS(X) + TS(Y) = I(X) + I(Y) == X + Y, 

so 

S(X) + S(Y) 

solves (2) with X + Y as the right-hand side. By the definition of S, it 
follows that S(X) + S(Y) = S(X + V). Similarly, S(tX) = tS(X) whenever t 
is a scalar. 

Exercise 8. Prove the last statement. 

We have proved: 

Proposition 1. Let T be a linear transformation of 1Il3• Then T has an inverse 
if and only if the equation 

T(X) = Y (2) 

has, for each Y, one and only one solution X. 

Corollary. If T has an inverse, then 

T(X) = 0 implies that X = o. (3) 

PROOF. Set Y = 0 in Proposition 1. 
Suppose, conversely, that T is a linear transformation for which (3) 

holds, i.e., 0 is the only vector which T sends into O. It follows that the 
equation T(X) = Y has at most one solution for each Y. To see this, 
suppose T(U) = Y and T(V) = Y. Then 

T(U - V) = T(U) - T(V) = Y - Y = 0, 

so by (3), U - V = 0, or U = V. 
We proceed to show that (3) also implies the existence of a solution of 

T(X) = Y for each Y. We saw, in Chapter 3.2, that the image of 1Il3 under 
any linear transformation is either a plane through 0, a line through 0, 1Il3, 

or the origin. Suppose the image of 1Il3 under T is a plane 'fT through o. The 
vectors T(EI), T(E2), T(E3) all then lie in 'fT. Three vectors in a plane are 
linearly dependent. Thus we can find scalars t l , t2, t3 , not all 0, such that 
tIT(EI) + t2T(E2) + t3T(E3) = O. Therefore, 

T(tIEI + t2E2 + t3E3) = tIT(EI) + t2T(E2) + t3T(E3) = O~ 

while t \ EJ + t,E, + t,E, - [:: 1 oF o. This contradicts (3). Hence. the image 
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of 1R3 under T cannot be a plane. In the same way, we conclude that the 
image cannot be a line or the origin, and so the image must be all of 1R3. 
This means that for each Y, there is some X with T(X) = Y. So the 
existence of a solution is established. We have just proved: If T is a linear 
transformation of 1R3 such that (3) holds, then Eq. (2) has one and only one 
solution for each Y. 

By Proposition I, it follows that T has an inverse. Thus we have: 

Proposition 2. Let T be a linear transformation of 1R3. If (3) holds, i.e., if 
T(X) = 0 implies that X = 0, then T has an inverse. Conversely, if T has an 
inverse, then (3) holds. 

We now need a practical test to decide whether or not (3) holds, given 
the matrix of some linear transformation T. In two dimensions, the test was 

this: If ( ~ ~) is the matrix of a transformation A, then A has an inverse if 

and only if ad - bc 7'=- O. We seek a similar test in 1R3. 
Let T be the linear transformation whose matrix is 

We call the vectors 

c - [::1 

the 'ow ''''0'' of thi, mat,ix. The v<olot X ~ [~:l .. ti'fi" T(X) ~ 0 if and 

only if 

{
a .• x. + a2x 2 + a3x3 = 0, 
b.x. + b2x 2 + b3x3 = 0, 

c.x. + c2X 2 + C3x3 = O. 
(4) 

On p. 124, Chapter 3.0, we ,bowed that (4) has a nonzcm ,0Iution X ~ [~: 1 
if and only if 3 

A· (B X C) = O. (5) 

Combining this last result with Proposition 2, we obtain: 
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Theorem 3.4. Let T be a linear transformation of 1R3 and denote by A, B, C 
the row vectors of the matrix of T. Then T has an inverse if and only if 
A . (B X C) =1= O. 

Let T be a linear transformation of 1R3 and assume that A . (B X C) =1= O. 
We wish to calculate the matrix of T - I. Set 

alu l + a2u2 + a3u3 = 1, 

blu l + b2u2 + b3u3 = 0, 

ClUJ + C2U2 + C3U3 = O. 

Set A = A· (B X C). Then we have 

A· (B X C) = A, 

B· (B X C) = 0, 

C· (B X C) = 0, 

and hence, using the hypothesis A =1= 0, 

A·BXC=1 
A ' 

B ·BXC=O 
A ' 

C. B ~ C =0. 

Thus [:i] ~ B X Cia '"ti,lies (6), '" 

r( B ~ C) ~ [H 
and so 

B~C~T~'[H 
Now recall that by Exercise 6, Chapter 3.0, 

A· (B X C) = B· (C X A) = C· (A X B). 

(6) 

(7) 
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By a calculation like the one which led to (7), we get 

C~A~Y-'m 
and 

A~B-T-'m 
By the definition of the cross product, 

Ib2 
C2 

b31 C3 

BxC= /b3 bl / and 
C3 c I 

Ib l 
CI 

b21 C2 

I C2 a2 
C31 a3 

CxA= I C3 a3 CII a l and 

I CI 
a l 

C21 a2 

la2 
b2 

a31 
b3 

AxB= la3 
b3 

all 
bl 

la l 
bl 

a21 
b2 

We conclude that 

I b2 
C2 

b3 1 C3 
I C2 a2 C31 a3 \a2 

b2 a3\ b3 

m(T-I) = i I b3 
C3 

bll 
CI 

I C3 a3 CII a l 
\a3 
b3 

all 
bl 

(8) 

\b l 
CI 

b2 1 c2 
I CI 
a l 

C21 a2 la l 
bl 

a21 
b2 

Note that 

d=Ao(BXC)= allb2 b3\+a2\b3 bl\+a3\bl 
c2 c3 c3 c I c I 

b2 \ 0 c2 
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EXAMPLE 6. If m(T) ~ [1 ~ ~ 1]. find m(T-'). 

1l=11~ -111+ 21-1 1 61+ 316 ~I 
= 1 . 1 + 2( - 1) + 3 . 1 = 2. 

By (8), 

- (-1) 

- (-1) 

- (1) 

Exercise 9. Verify that the matrix just obtained for m(T- I) satisfies m(T)m(T- I) 
= m(/) and m(T-I)m(T) = m(/). 

Exercise 10. Use (8) to find inverses for 

(a) G , n' 0 
0 

(b) U 0 -:, ), 0 , 
(c) G 5 

~). 0 
0 

Let m be a matrix which possesses an inverse matrix m - I, i.e., 

mm - I = m - 1m = identity matrix = id. 

[
a l a2 a3] 

Let m = b l b2 b3 • We shall give a new approach to the problem of 
C I C2 c3 

finding the entries in the matrix m - I. 

Given a vector [;:]. consider tbe following system of equations for tbe 

unknowns XI' x 2, X3: 

alx l + a2x 2 + a3x 3 = YI , 

bix i + b2x 2 + b3x 3 = Yz, 

CIX I + C2X2 + C3 X3 = Y3' 

Suppose we can solve the system (9) be setting 

XI = dlYI + d2Yz + d3Y3' 

X2 = elYI + e2Y2 + e3Y3' 

X3 = flYI + f2Yz + f3Y3' 

(9) 

(10) 



3.4 Inverses and Systems of Equations 141 

where d;. eoh are certain numbers which do not depend onYI.h.YJ· We 
define a matrix n by 

n - [~ 7, 21 
Then (9) and (10) state that. setting 

X= [::] and Y- [f:]. 
m(X) = Y and n(Y) = X. So 

nm(X) = n(m(X» = n(Y) = X. 

This holds for each vector X. Hence 

nm = id. 
It follows that 

n = (nm)(m-I) = id(m- I ) = m- I. 

We thus have the following result: 

The matrix n defined by (11) is the inverse of the matrix m. 

EXAMPLE 7. m = 1 0 - I . Find m -I by the preceding method. [
1 2 3] 

o 1 I 
The system (9) here is 

XI +2X2 + 3X3 = YI' 
XI X3 = Y2' 

X2 + X3 = Y3' 

We can solve this by eliminating X3 from the last equation by setting 

X3 = Y3 - X2' 

Inserting this expression in the first two equations yields 

XI + 2X2 + 3(Y3 - x2) = YI. 

or 

XI - (YJ - X2) = h. 

XI - X2 = YI - 3Y3' 

XI + x2 = h + YJ. 

Solving this system for XI and X2' we find 

2xI = YI + h - 2YJ. 

2X2 = (h + Y3) - (YI - 3Y3) = - YI + h + 4Y3' 

(11 ) 
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so 

XI =! YI +! Y2 - Y3' 

X2 = -! YI +! 12 + 2Y3' 
and 

since 

Thus, here, 

m-I=[:: :: ::]=[_\ ! -2
1
]. 

fl f2 f3 t - t - 1 

To our great relief, the answer we found agrees with our earlier answer to 
Example 6. 

Exercise 11. Using the method just described, find inverses for the following 
matrices: 

(a) 0 1 

~), 0 
0 

(b) (l 5 

~} 0 
0 

(c) U - 1 2) o 1· 
2 1 

Exercise 12. Using the methods just described, find an inverse for 

(g r n· 
Exercise 13. By computing A . (8 X C), show that [! ; ;~ 1 has an inverse pro-

I u u2 

vided s, t, u are all distinct. Hint: Simplify the expression you get for A· (8 X C), 
writing it as a product. 

Exercise 14. Sand T are linear transformations of 1R3 which have inverses. Show 
that ST has an inverse and that (ST)-I = T-IS -I. 

Exercise 15. S is an invertible linear transformation of 1R3, D is a linear transforma­
tion of 1R3, and T = S - IDS. Show that 

T 2 =S-ID 2S, T 3 =S-ID 3S. 

Exercise 16. n is a 3 X 3 matrix such that n3 = O. Show that 

(id + n) -I = id - n + n2• 
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Exercise 17. Set n=(g ~ ~). Show that n3 =O. Using Exercise 16, find the 
000 

inverse of id + n = ( ~ ~ ~). Compare your result with the answer to Exer­
o 0 I 

cise 12. 

Exercise 18. For what values of a, b, c, d does (~ ~ ~) have an inverse? 
Oed 

Calculate the inverse when it exists. 

We defined the inverse S of a linear transformation T by the two 
conditions: 

(i) ST= I 

and 

(ii) TS = I. 

Suppose that only one of the two conditions is satisfied, say, (i) holds. Does 
(ii) follow? 

Proposition 3. Let S, T be linear transformations of 1R3 such that ST = I. 
Then TS = I. 

PROOF. Choose a vector X such that T(X) = o. Then X = I(X) = ST(X) 
= S(O) = o. Then, by Proposition 2, T has an inverse, T -I, with T -IT 
= TT- I = I. Since ST= I, S = SI = S(TT- 1) = (ST)T- 1 = IT- 1 

= IT- I = T- I. Hence TS = T(T- I) = I. 

Exercise 19. Let S, T be two linear transformations. Show that if the product ST 
has an inverse, then S has an inverse and T has an inverse. 

§ 1. Inverses of Elementary Matrices and Diagonal 
Matrices 

Recall the elementary matrices eij and Pij that we studied in Chapter 3.3. 
Let us find the inverses of these matrices. 

[1 0 0][1 0 0] [1 0 0] 
EXAMPLE 8. e3le~1 = 0 1 0 0 1 0 = 0 1 0 . Choosing 

sOl t 0 1 s+t 0 1 
t = - s, this gives e31e3ls = id, and replacing s by - sand t by s, we get 
e31se31 = id. So (e31)-1 = e3l s. 

Exercise 20. Show that (e~2)-1 = ej2s • 

Exercise 21. ,Show that (eh)-l = eu'. 
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In the general case, for all i, j, and s, a similar calculation gives us: 

P 'f 4 ( S)- I -s ropOSI Ion . eij = eij . 

EXAMPLE 9. Recall that P31 = [~ ~ 6]. We know that for each matrix m, 
100 

P31m is obtained from m by interchanging the first and third rows and 
leaving the second row alone. Hence, 

P31P31 = id, 

Exercise 22. Find (pl2)-I. 

In the general case, we have: 

Proposition 5. For every i, j, i =1= j, 

(pij)-I=pij' 

Next, consider the diagonal matrix 

d~ [~ ; ~ 
If any of the numbers t l , t2, t3 is 0, then by Theorem 3.4, d has no 

inverse. If all ti =1= 0, we have 

[~ 
0 0 

[Y 
0 

~ 1 ~ id, t2 0 1/ t2 
0 t3 0 1/ t3 

[1/ t, 0 0 

sod- I = ~ 1/ t2 0 . Thus we have: 

0 1/ t3 

Proposition 6. A diagonal matrix d has an inverse if and only if its diagonal 
entries are all =1= 0, and in that case d - I is the diagonal matrix whose 
diagonal entries are the reciprocals of those for d. 

We shall now show that, by multiplying a given matrix m by suitable 
elementary matrices, we can convert m into a diagonal matrix. 
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[
al 

Let m = b l 

CI 

~: ::]. If a l * 0, we can choose t so that b l + tal = O. 
c2 C3 

Then 

[
al 

e~lm = 0 
C I 

Similarly, we can choose s so that 

e31eilm = [~Ol b2 :
2 
ta2 

C2 + sa2 

~ ~ l Similarly. we can find '. q so that 

e;,e"me~,el, ~ [~ ; a (12) 

If a l = 0, either m is the zero matrix or some entry of m is * 0, say, b3 * O. 
Then 

[
a3 a2 al] [b3 b2 bl] 

mp13 = b3 b2 b l and PI2mpI3 = a3 a2 al' 
C3 c2 CI C3 c2 CI 

Since b3 * 0, we can apply formula (12) to the matrix PI2mpI3 and get 

[
b3 0 0] 

e3Ie~IPl2mpI3eI2e(3 = 0 x y. 
o z w 

(13) 

If x * 0, we can proceed as earlier and find scalars i, j so that (2) yields 

[
b3 0 0] 

e;2e3Ie~IPl2mpI3eI2e(3ef3 = 0 x o· 
o 0 u 

The right-hand side is a diagonal matrix. If x = 0, we consider two 
possibilities. If y, z, w in (13) are all 0, then the right-hand side of (13) is a 
diagonal matrix. If at least one of y, z, w * 0, say w * 0, we can multiply 
the left-hand side in (13) on the left by P23 and on the right by P23 and 
obtain 

o 0] 
w z, 
y x 
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where now w 0/= O. Proceeding as we did earlier when we had x 0/= 0, we find 
that 

e~2P23e3Ie~IP12mp\3e12e(3P23e{3 = 0 w 0, [
b3 0 0] 
o 0 u 

which is again a diagonal matrix. So in every case, we can find elementary 
matrices el"'" ek,fl"" ,ft so that 

e1e2 ... ekmflf2 .. . ft = d, 

where d is a diagonal matrix. It follows, by multiplying the last equation by 
e l- I , that 

Continuing, we obtain 

if ( -I -I-Id mi' .. JI = ek ... e2 el , 

and 

m = ek- I ••• e2-lel-ldft- ~= \ ... fl- I . 

Note that the inverse of an elementary matrix is again an elementary 
matrix. We have thus proved: 

Theorem 3.5. Let m be a 3 X 3 matrix. Then we can find elementary matrices 
gl' ... , gk' hi' ... , hi and a diagonal matrix d so that 

m = glg2'" gkdhlh2'" hi' (14) 

EXAMPLE 10. Let us express the matrix 

m~ [~ 
1 

~l I 
2 

in the form (14), 

e,,'m - [~ 
1 n -2 
2 

[I 1 n -5 -3 -2 e31 e21 m = ~ 
-3 

[I 1 n -3 2 -5 -3 -2 e32 I e31 e21 m = ~ 
0 

Also, 

[~ 
1 

~le~' ~ [~ 
0 

~l -2 -2 
0 0 
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and 

[~ 
0 

~le~'el' ~ [~ 
0 n -2 -2 

0 0 

SeWng d - [~ 0 

~l' we 
-3/2 -5 -3 -I I - d 

-2 thus have e 32 e31 e21 me l 2 e 23 - , 

0 
3 5 3{2d -I I = e21e31e3 e 23 e l 2 or 

[" ~Hi 
0 0][' 0 0][' 0 

~] 3 1 1 o 0 1 0 0 1 
5 2 0 15010 3/2 

X [~ 
0 0] [' 0 ~,m 

1 n -2 001 1 
0 100 0 

Exercise 23. Express the following matrices in the form of (14): 

(a) U ~ ~). 
(b) U g ~), 

(c) U i D· 

§2. Systems of Three Linear Equations in Three 
Unknowns 

147 

so m 

We consider the following system of three equations in three unknowns: 
alx l + a2x 2 + a3x3 = u l , 

bix i + b2x 2 + b3X 3 = U2' 

CIX I + C2X 2 + C3X 3 = u 3 • 

( 15) 

For each choice of numbers ul , U2 , U3 , we may ask: Does the system (15) 
have a solution XI' x2, X3? And if (15) has a solution, is this solution 
unique? 

We may write the above expression in matrix form by introducing the 
linear transformation T with matrix 
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Then the system (15) may be written 

T(X) = U, (16) 

wh<,e X is the veotor [;: land U - [~: l We call (16) the ""nhomogeneous 

system with matrix m. 
If the matrix m has an inverse, then the linear transformation T has an 

inverse T- 1• We then have 

T(T-I(U») = (TT-I)(U) = U; 

so X = T - \U) is a solution of (16), and, conversely, if T(X) = U, then 
X = T-\T(X)) = T-\U). 

So there is a unique solution vector X for each choice of U. 

In particular, if U - 0, we find that X - [g]- T - , [g] is the unique 

solution of the system 
T(X) = O. (17) 

This system, with the zero vector on the right-hand side, is called the 
homogeneous system associated with the system (15). 

No matter what the matrix m is, the homogeneous system has at least 

one solution, namely, the solution X - [H This is called the I,Mo' ,o'ulion 

of the homogeneous system, and we have seen above that if m has an 
inverse, then the trivial solution is the only solution of the homogeneous 
system. 

But what if m does not possess an inverse? Will the system (17) then have 
a nontrivial solution? Proposition 2 of this chapter tells us that the answer is 
yes. 

As in the 2-dimensional case, we obtain the following three general 
results. 

Proposition 7. The system (16) has a unique solution X for every U if and only 
if the transformation T has an inverse. 

Proposition 8. The homogeneous system (17) has a non-trivial solution if and 
only if T fails to have an inverse. 

In the case that T fails to have an inverse, the general solution of (16) is 
described as follows. 

Proposition 9. If X is a particular solution of (16), so that T(X) = U, we may 
express every solution of (16) in the form X + Xh, where Xh is a solution of the 

homogeneous system (17). 
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EXAMPLE 11. Find all solutions of the nonhomogeneous system 

{
XI + X2 + X3 = 1, 
2xI - X2 = S, 
SX I + 2X2 + 3X3 = 8. 

If XI' X2' X3 solves the corresponding homogeneous system 

{
XI + x 2 + X3 = ° 
2xI - X2 = 0, 

SX I + 2X2 + 3x3 = 0, 
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then 2xI = X 2 and XI + 2xI + X3 = 0, so X3 = -3x l . Hence, the most 

general solution X· - [;:] of the homogeneous system ~ 

Xh = [ 2;1 ]. 
- 3x I 

A particular solution X of the nonhomogeneous system is 

By Proposition 9, the general solution of the nonhomogeneous system is 
then 

X=[:l]+ ;~I ]=[-::2::]' ° -3xl -3xl 

where X I is an arbitrary real number. 

§3. Two Equations in Three Unknowns 

In the system (IS) under consideration, the number of unknowns equals the 
number of equations. Suppose we are given a system of two equations in 
three unknowns: 

alx l + a 2x 2 + a3x3 = UI , 

blx l + b 2X 2 + b 3X 3 = u 2 • 

The homogeneous system corresponding to (18) is 

alx l + a2x 2 + a3x3 = 0, 

blx l + b2X2 + b3X3 = 0. 

(18) 

(19) 
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Setting X ~ [~:} A ~ [::} B ~ [H we may w,ik the syskm (18) as 

A·X= u\, (18') 

and the system (19) as 

A·X=O, B·X=O. (19') 

Propositio~ 10. If X is one solution of (18), then any solution of (18) can be 
written as X + Xh, where Xh is a solution of the homogeneous system (19). 

PROOF. If A· X = A· X = u\ and B· X = B· X = u2 , then A· (X - X) = 0 
and B . (X - X) = 0, so X - X is a solution Xh of (19). 

If A and B are linearly independent, then the solution space of (19) is just 
the line perpendicular to the plane spanned by A and B, i.e., the line along 
the nonzero vector A X B. 

If A and B are linearly dependent, but not both 0, then the solution space 
of (19) will be the plane through the origin perpendicular to the line 
containing A and B. 

If A = B = 0, then the solution of (19) is all of jR3. 



CHAPTER 3.5 

Determinants 

Let m be the matrix 

[:: :~ ::]. 
CI C2 C3 

Let A, B, C denote the row vectors of this matrix. The quantity 

A· (B X C) = B . (C X A) = C· (A X B) 

is called the determinant of m and is denoted det(m) or 

al a2 a3 

b l b2 b3 • 

CI C2 C3 

Expressed in these terms, Theorem 3.4 of Chapter 3.4 says that m has an 
inverse if and only if det(m) =1= O. In Exercise 6 in Chapter 3.0, we saw that 

A· (B X C) = B . (C X A) = C . (A X B). 

Also A X B = - B X A. 
In what follows, we shall frequently make use of these relations. 

(i) If two rows are interchanged, the determinant changes sign. 

PROOF. 

b3 ] a3 =B·(AXC)=B·(-CXA)= -B·(CXA) 
C3 

al a2 a3 
= - A . (B X C) = - bl b2 b3 

CI C2 C3 
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Interchanging the last two rows, we get 

a I a2 a3 a I a2 a3 
C I C2 C3 =A·(CXB)= -A'(BXC)= - hi h2 h3 
hi h2 h3 C I C2 C3 

Finally, interchanging the first and third rows, 

c i C2 C3 a l a2 a3 
hI h2 h3 = C· (B X A) = -C· (A X B) = - hi h2 h3 
a l a2 a3 

Thus (i) is proved. 

(ii) If a row is 0, then det(m) = 0. 

PROOF. If A = 0, det(m) = O· (B X C) = 0, and if B or C = 0, det(m) = 
A· (0 X C) or A· (B X 0), and so det(m) = 0. 

(iii) If two rows are equal, then det(m) = 0. 

PROOF. If A = B, det(m) = A· (A X C) = 0, by Chapter 3.0., p. 121. Simi­
larly, if A = C, det(m) = 0. If B = C, det(m) = A . (B X B) = A . 0 = 0. So 
(iii) is proved. 

(iv) Suppose the three rows A, B, C are linearly dependent. Then det(m) = 0. 

PROOF. If Band C are linearly dependent, then B X C = 0, so 

det(m) = A· (B X C) = A· 0 = 0. 

If Band C are linearly independent, then A = clB + c2e, and so 

det(m) = A· (B X C) = (ciB + C2C)' B X C 

= clB . (B X C) + C2C, (B X C) = clO + C20 = 0, 

so (iv) is proved. 

(v) Suppose the three rows A, B, C are linearly independent. Then det(m) =1= 0. 

PROOF. If X = [~: 1 is a vector that m sends into O. then 

[
a l a2 a3][XI] [0] hi h2 h3 X2 = ° , 
CI C2 C3 X3 ° 

so A . X = 0, B· X = 0, C· X = 0. By Proposition 1, Chapter 3.0, we con­

clude that X . X = ° and so X = O. 
So m sends only 0 into O. By Proposition 2 of Chapter 3.4, it follows that 

m has an inverse, and so by Theorem 3.4 of Chapter 3.4, det(m) =1= 0. 
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Putting (iv) and (v) together, we have: 

(vi) det(m) =1= 0 if and only if the rows of m are linearly independent. 

Exercise 1. Show that (iii) and (ii) are consequences of (iv). 

(vii) If a scalar multiple of one row of a matrix is added to another row, the 
determinant is unchanged. 

PROOF. 

a2 a3 
h2 + ta2 h3 + ta3 = A· [ (B + tA ) x c] 

= A . (B x C + tA x C) 

= A . (B x C) + tA· (A x C) 

a l a2 a3 

= A· (B x C) = hI h2 h3 
CI C2 C3 

Similar reasoning gives the result in the other cases. 

Exercise 2. Verify (vii) for the case when t times the last row is added to the first 
row. 

§ 1. The Transpose of a Matrix 

[
a l a2 a3] 

Let m = hI h2 h3 . We call the line through aI' h2' C3 the diagonal of m. 
CI C2 C3 

The following pairs of entries lie symmetrically placed with respect to the 
diagonal: 

Let us interchange the elements in each pair, but leave the elements on the 
diagonal alone, and write down the matrix this gives: 
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We call this new matrix the transpose of m and denote it by m*. Note that 
the columns of m* are the rows of m and the rows of m* are the columns of 
m. 

(viii) det(m*) = det(m). 

PROOF. 

det(m*) = al\b2 C2\_b l \a2 C2\+c l\a2 b2\ 
b3 C3 a3 C3 a3 b3 

= alb2c3 - alc2b3 - bla2C3 + blC2a3 + cla2b3 - cla3b2 

det(m) = allb2 b31_a21bl b31+a31bl b21 
C2 C3 C I C3 C I C2 

= alb2c3 - alb3c2 - a2blC3 + a2b2cI + a3blC2 - a3b2c I • 

Thus det(m) = det(m*), as asserted. 

We can use this result to give another characterization of matrices with 
determinant *- O. 

(ix) det(m) *- 0 if and only if the columns of m are linearly independent. 

PROOF. If det(m) *- 0, then det(m*) *- 0 by (viii). Hence, the rows of m* are 
linearly independent by (vi). But the rows of m* are the columns of m, so 
the columns of m are independent. 

Conversely, if the columns of m are independent, then the rows of m* are 
independent, so det(m*) *- 0 and det(m) *- O. The statement is proved. 

Is the analogue of (vii) true when columns are used instead of rows? 

EXAMPLE 1. Fix a matrix 

let t be a scalar, and set 

Then 

al a2 + tal a3 
mt = bl b2 + tb l b3 

CI C2 + tCI C3 

a l bl 

mt = a2 + tal b2 + tb l 
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By (viii), 

By (vii), 

a l b l CI 

det(mn = a2 b2 e2 = det(m*). 

a3 b3 b3 

Using (viii), we again get det(m*) = det(m), so det(mt ) = det(m). Thus 

a l a2 + tal a3 a l a2 a3 

b l b2 + tb l b2 b l b2 b3 

e l e2 + tel e3 e l e2 e3 

and so the analogue of (vii) holds in this case. 

Exercise 3. Show that 

al + ta} a2 a3 al a2 a} 

b l + tb} b2 b} b l b2 b} 

CI + tc} C2 c} CI C2 C} 

Reasoning as in Example 1 and Exercise 2, we find that: 
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(x) If a scalar multiple of one column of a matrix is added to another column, 
the determinant is unchanged. 

§2. Elementary Matrices 

Recall the elementary matrices eij and Pij we studied in earlier chapters. Let 
us find their determinants. 

EXAMPLE 2. 

1 t 0 
det(e{2)= 0 1 0 = 1\1 O\_t\O 0\+0= 1. 

001 0101 

(xi) For every i,j, t, det(eij) = 1, and for every l,j, det(pij) = -1. 

Exercise 4. Prove (xi). 
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[
al + tb l 

e!2m = bl 

C I 

Hence, by (vii), det(e!2m) = det(m). 

EXAMPLE 4. Let m be as before. Then 

Hence, by (x), det(me!2) = det(m). 

EXAMPLE 5. Let m be as before. 

a2 + tal 
b2 + tb l 

c2 + tCI 

Linear Algebra Through Geometry 

Then, by (i), det(p\3m) = -detm. By (xi), det(PI3) = -1. So we have 

det(pI3m) = (det(pI3»)det(m). 

Exercise 5. Show that for each matrix m, 

and 

det(meI3) = det(m)det( eb). 

Exercise 6. Show that for each matrix m, 

det(PI2m) = det(PI2)det(m). 

Reasoning as in the preceding examples and exercises, we find: 

(xii) For every i, j, t and every matrix m, 

det( eijm) = det( eij )det( m) 

and 

det( meij) = det( m)det( eij). 
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Also: 

(xiii) For every i, j, 

det(pijm) = det(mpij) = (detm)(det Pij)· 

[
tla l tla2 tla3j 

dm = t2b2 t2b2 t2b3 · 

t3cI t3c2 t3c3 

If A, B, C are the rows of m, then tlA, t2B, t3C are the rows of dm. Hence 

det(dm) = tlA· (t2B X t3C) 

= tlt2t3A· B X C = tlt2t3det(m). 

Also, det(d) = tlt2t3. Thus we have proved: 

(xiv) If d is a diagonal matrix and m is any matrix, then det(dm) = det(d) 
det(m). Similarly, we get det(md) = det(m)det(d). 

In Theorem 2.7 of Chapter 2.5, we showed that if a, b are two 2 X 2 
matrices, then det(ab) = (deta)(detb). We now proceed to prove the corre­
sponding relation for 3 X 3 matrices. 

Theorem 3.6. Let a, b be two 3 X 3 matrices. Then det(ab) = (deta)(qetb). 

(Note: Theorems 3.5 and 3.6 appear below.) 
In the 2 X 2 case, we proved the corresponding result by direct computa­

tion. Although it would be possible to do the same with 3 X 3 case, we 
prefer to give a proof based on the properties of elementary matrices. 

PROOF. By Theorem 3.3 of Chapter 3.4, there exists a diagonal matrix d and 
elementary matrices ei , Jj such that 

a = e l •.. ekdfl .. . Ji 
Using relations (xii), (xiii), and (xiv), we see that 

deta = (dete l) ... (detek)(detd)(detfl) ... (detJi). 

Similarly, there exists a diagonal matrix d' and elementary matrices g;. hj 

so that 
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and 

detb = (det gl) ... (det gr)(detd')(deth l) ... (deths). 

Hence 

and 

det(ab) = (det(e l») ... (deted(detd)(detfl) ... (deths). 

So 

det( ab) = det( a)det( b). 

Note: Even though, in general, ab *- ba, we now see that det(ab) 
= det(ba), because both are equal to (deta)(detb) = (detb)(deta). 

§3. Geometric Meaning of 3 X 3 Determinants 

Next we proceed to extend to determinants of 3 X 3 matrices the results we 
found in Chapter 2.5 concerning the relations between determinants and 
orientation and between determinants and area. 

Consider a triplet of vectors Xl' X2, X3 regarded as an ordered triplet 
with Xl first, X2 second, and X3 third. Suppose Xl and X2 are linearly 
independent. Then Xl X X2 is perpendicular to the plane of Xl and X2, and 
it is so chosen that the rotation about Xl X X2 which sends Xl to X2 is 
through a positive angle a. The upper half-space determined by the ordered 
pair Xl' X2 is the set of all vectors X such that (Xl X X2) . X > O. 

The triplet Xl' X2, X3 is said to be positively oriented if X3 lies in the 
upper half-space determined by the ordered pair Xl' X2 i.e., if (Xl X X2) . 
X3 > O. If (Xl X X2) . X3 < 0, the triplet is said to be negatively oriented. 

EXAMPLE 6. 

(a) The triplet El , E2, E3 is positively oriented since (El X E2) . E3 = E3 . E3 
= 1 >0. 

(b) The triplet E l, E2, - E3 is negatively oriented, since (El X E2) . (- E3) 
= -1. 

(c) The triplet E2, El, E3 is negatively oriented, since (E2 X E l) . E3 = 
(- E3)' E3 = -1 (see Fig. 3.12). 

Let 
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-EJ 

Figure 3.12 

be an oriented triplet of vectors. Then 

XII x21 X 3I 

(XI X X2) . X3 = X 12 X22 X32 
Xu X23 X33 

By (viii), the right-hand term equals 

XII X 12 Xu 
X21 X22 X23 , 
X3 I X32 x)3 
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EJ 

which is the determinant of the matrix whose columns are the vectors XI' 
X2, X3. Let us denote this matrix by (XII X2 1 X3). Thus 

(XI X X2) • X3 = det(XII X21 X3), 

and so we obtain: 

Proposition 1. The triplet XI' X2, X3 is positively oriented if and only if 
det(XII X21 X3) > o. 

Next let A be a linear transformation which has an inverse. We say that 
A preserves orientation if whenever Xl> X2, X3 is a positively oriented triplet, 
then the triplet A (XI)' A (X2), A (X3) of image vectors is also positively 
oriented. 

In Chapter 2.5, Theorem 2.5, we showed that a linear transformation of 
1R2 preserves orientation if and only if the determinant of its matrix > O. Is 
the analogous result true for 1R3? 

[
a II a 12 au] 

Let A be a linear transformation of 1R3 with meA) = a21 a22 a23. 
a31 an a33 

Suppose A has an inverse and preserves orientation. Since the triplet E I, E2, 
E3 is positively oriented, it follows that the triplet A (EI)' A (E2), A (E3) is 
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positively oriented. Hence, by Theorem 3.5, the determinant of the matrix 

(A (El) I A (E2) I A (E3» is > O. But A (El) = [:::], etc. So (A (El) I A (E2) 
a3l 

IA(E3»=m(A), and so det(m(A» >0. Conversely, let A be a linear 
transformation and suppose det(m(A» > O. Let Xl' X2, X3 be a positively 

oriented triplet of vectors with Xl = [~::], with X2 and X3 expressed 
X3l 

[
alIX ll + a I2x 2l + al3X31] 

similarly. Then A(Xl) = a2l x lI + a22x 2l + a23x3l , and we have similar 
a3lx ll + a 32x 2l + a 33x 3l 

expressions for A (X2), A (X3). 
The matrix 

[
allX ll + a I2x 2l + a l3 x 3l 

= a2l x ll + a 22x 2l + a 23 x 3l 
a 3l x ll + a 32x 2l + a 33x 3l 

Then, by Theorem 3.7, 

a ll x l2 + a l2x 22 + a l3x 32 a lI x l3 + a l2x 23 + al3X33] 
a 2l x l2 + a 22x 22 + a 23x 32 a2l x l3 + a22x 23 + a 23x 33 

a3l x l2 + a 32x 22 + a 33x 32 a3l x l3 + a 32x 23 + a33x 33 

all aI2 a l3 XII 
det(A(XdIA(X2)IA(X3)) = a 2l a22 a 23 X2l 

a3l a32 a33 X3l 

XI2 Xl3 
X22 X23 

X32 X33 

Since the triplet Xl' X2, X3 is positively oriented, the second determinant on 
the right-hand side is > 0, and since by hypothesis det(m(A» > 0, the first 
determinant on the right-hand side is also > O. Hence A (Xl)' A (X2), A (X3) 

is a positively oriented triplet. Thus A preserves orientation. We have 
proved: 

Theorem 3.7. A linear transformation A on 1R3 preserves orientation if and 

only if det(m(A» > O. 

We now proceed to describe the relation between 3 X 3 determinants and 

volume. Let 

Xl = [~::], X2 = [~:~], X3 = [~:~] 
X3l x32 X33 

be a positively oriented triplet of vectors. Denote by IT the parallelepiped 
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with edges along these vectors, i.e., II consists of all vectors 

X = IIXI + 12X2 + 13X3' 

where II' 12, 13 are scalars between 0 and 1. By (ix) of Chapter 3.0, 

By (viii), the right-hand side equals 

So 

Xli XI2 x\3 

X21 X22 X23 = det(XI I X2 1 X3)· 

X31 x)2 X33 
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(I) 

Now let T be a linear transformation having an inverse. Denote by T(II) 
the image of II under T. T(II) is the parallelepiped determined by the 
vectors T(X 1 ), T(X 2 ), T(X3). Hence, by formula (1) (see Fig. 3.13), we have 

volume( T(II» = det( T(X I), T(X2), T(X3». (2) 

Figure 3.13 
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On the other hand, the calculation that led us to Theorem 3.S gives 

det(T(X,) I T(X2) I T(X3)) = (det(m(T)))det(X,1 X2 1 X3) 

= det(m(T))' volume(ll). 

By (2), this gives 

volume( T(ll)) = (det( m( T)))(volume(ll)). (3) 

We have thus found the following counterpart to Theorem 2.6 of 
Chapter 2.S. 

Theorem 3.8. Let T be an orientation-preserving linear transformation of 1R3. 
If II is any parallelepiped, then 

volume( T(ll)) = (det( m( T)))(volume(ll)). (4) 

Note: If T reverses orientation, the same argument yields formula (4) 
with a minus sign on the right-hand side, so for every invertible transforma­
tion T, we have 

volume(T(ll)) = Idet(m(T))lvolume(ll). (S) 

If T has no inverse, T(II) degenerates into a figure lying in a plane, so the 
left-hand side is 0 while the right-hand side is 0, since det(m(T)) = 0 in this 
case. Thus, formula (S) is valid for every linear transformation of 1R3. 
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Eigenvalues 

EXAMPLE 1. Let 'IT be a plane through the origin and let S be the 
transformation which reflects each vector through 'IT. If Y is a vector on 'IT, 

then S(Y) = Y, and if U is a vector perpendicular to 'IT, then S(U) = - U. 
Thus for 1= 1 and 1= -1, there exist nonzero vectors X satisfying S(X) 
= IX. If X is any vector which is neither on 'IT nor perpendicular to 'IT, then 
S(X) is not a multiple of X. 

Let T be a linear transformation of 1R3 and let ( be a real number. We say 
that I is an eigenvalue of T if there is some nonzero vector X such that 

T(X) = IX and X =1= O. 

If ( is an eigenvalue of T, then we call a vector Y an eigenvector of T 
corresponding (0 t if T(Y) = tV. 

For example, the eigenvalues of S are 1 and -1. The eigenvectors of S 
corresponding to 1 are all the vectors in 'IT and the eigenvectors of S 
corresponding to - 1 are all the vectors perpendicular to 'IT. 

EXAMPLE 2. Fix A in IR. Let D" be stretching by A. Then for every vector X, 
D,,(X) = AX. Hence A is an eigenvalue of D". Every vector X in 1R3 is an 
eigenvector of D" corresponding to the eigenvalue A. 

EXAMPLE 3. Let D be the linear transformation with the diagonal matrix 
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If X = [~~l' then D(X) = [~I ~2 ~ ] [~~l = [~::: . It follows that setting 
3 0 0 A3 3 A3X3 

E, - [H ~- [!} E,- [H we have 

Thus AI' A2, A3 are eigenvalues of D and EI, E2 , E3 are eigenvectors. Does 

D have any other eigenvalues? Suppose D(X) - IX, where X - [;iJ. X oF 0, 

and I is in 1ft Then IX2 = A2X2 , so IXi = AiXi for i = 1,2,3. Since Xi =1= 0 [
IXI AIXI] 

IX3 A3X3 
for some i, I = Ai' Therefore, AI> A2, A3 are all the eigenvalues of D. 

Exercise 1. With D as in Example 3, find all the eigenvectors of D. 

Exercise 2. Let T be a linear transformation of 1R3 satisfying T2 = I. Let t be an 
eigenvalue of T and X an eigenvector corresponding to t with X =F O. 

(a) Show that T2(X) = t2X. 
(b) Show that t = I or t = -1. 
(c) Apply what you have found to the reflection S in Example 1. 

Exercise 3. Let T be a linear transformation of 1R3 such that T2 = O. 

(a) Show that 0 is an eigenvalue of T. 
(b) Show that 0 is the only eigenvalue of T. 

Exercise 4. Let T be the linear transformation with matrix 

(0 0 I) 
m(T) = 0 0 0 . 

000 

(a) Show that T2 = O. 
(b) Apply Exercise 3 to determine the eigenvalues of T. 
(c) Find all eigenvectors of T. 

§ 1. Characteristic Equation 

[
al a2 a3] 

Given a transformation T with matrix b l b2 b3 , how can we determine 
c i C2 C3 

the eigenvalues of T? We proceed as we did for the corresponding problem 
in two dimensions. 
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or 

{
a\x\ + a2x2 + a3x3 = tX\ , 

b\x\ + b2X2 + b3X3 = tX2' 
C\X\ + C2X2 +C3X3 = tX3 . 

Transposing the right-hand terms, we get 

{
( a\ - t)X\ + a2x2 + a3x3 = 0, 

b\x\ + (b2 - t)X2 + b3X3 = 0, 

c\X\ + c2X2 + (C3 - t)X3 = 0. 
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(1) 

(2) 

Thus XI' X2, X3 is a nonzero solution of the homogeneous system (2). By 
Proposition 8 and Theorem 3.4 of Chapter 3.4, it follows that the determi-
nant 

=0. 

If the left-hand side is expanded, this equation has the form 

- t3 + u\t2 + u2t + U3 = 0, 

where UI' u2, U3 are certain constants. 

(3) 

(4) 

Equation (3) is called the characteristic equation for the transformation T. 
We just saw that if t is an eigenvalue of T, then t is a root of the 

characteristic equation of T. Conversely, if t is a root of the characteristic 
equation, then (3) holds. Hence, by Proposition 8 of Chapter 3.4, the 
system (2) has a nonzero solution XI' X2' X3' and so (1) also has this 
solution. Therefore, 

Hence t is an eigenvalue of T. We have proved: 

Theorem 3.8. A real number t is an eigenvalue of the transformation T of 1R3 if 
and only if t is a root of the characteristic equation (3). 
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Theorem 3.8 appears later. 

EXAMPLE 4. Let T have matrix 

[~5 ~ n 
The characteristic equation of T is 

or 

1 - t 

-5 
2 

o 
2 - t 

3 

o 
o =0 

7-t 

(1 - t)12 ~ t 7 ~ t 1= (1 - t)(2 - t)(7 - t) = O. 

The roots of this equation are 1, 2, and 7, and so these are the eigenvallles 
of T. Let us calculate the eigenvectors corresponding to the eigenvalue 2. If 

[;: 1 is such a veetm, then 

0 0 n x, 
2xI 

-5 2 0 X2 = 2 x2 = 2x2 
2 3 7 X3 X3 2x3 

Then 

XI = 2x l , 

-5xl + 2X2 = 2x2, 

2x I + 3x2 + 7 X3 = 2X3 . 

The first equation gives X I = O. The second equation puts no restriction on 
x2 • The third equation yields 

5x3 = - 3x2 or X3 = - ~X2' 

Thus an eigenvector of T corresponding to the eigenvalue 2 must have the 

form [_ ~2 ] = [ 5~ ], if we set y = t x2 • Is every vector of this form an 
SX2 - 3y 

eigenvector? 

[ ~ 5 ~ ~l[ 5~ 1=[ I~Y ] = [ I~Y] = 2[ 5~ ]. 
2 3 7 -3y 15y-21y -6y -3y 

Thus the answer is yes and we have: a vector is an eigenvector of T with 
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eigenvalue 2 if and only if it has the form [ 5~ ]. Note that the vectors of 
- 3y 

this form fill up the line ~ [ J 3] Y in R} which passes through the origin. 

Exercise 5. Find all eigenvectors corresponding to the eigenvalue I for the transfor­
mation T of Example 4. Show that these vectors fill up a line through the origin. 

EXAMPLE 5. Fix () with 0 ~ () < 2'IT. Ri is the transformation of 1R3 which 
rotates each vector by () degrees around the positive x3-axis. Find all 
eigenvalues of R/. We have 

m(Ri)- [~: 
- sinO 
cosO 
o 

so the characteristic equation is 

cos(} - t 
sin(} 
o 

- sin(} 
cosO - t 

o 

o 
o =-

I - t 

o 
sin(} 

cos(} - t 

o 
cos(} - t 

- sinlJ 

I - t 
o 
o 

= -(1 - t)[ - (sinlJ)2 - (coslJ - 1)2] 

=0. 
If t is a real root, then either 1 - t = 0 or (sinlJ)2 + (coslJ - 1i = O. The 
second equation implies that sinlJ = 0 and coslJ = 1. 

Case 1: IJ =1= 0, 'IT. In this case, t = 1 is the only root of the characteristic 
equation, and so 1 is the only eigenvalue. If X lies on the xraxis, evidently 
T(X) = X = 1 . X, so the x3-axis consists of eigenvectors with eigenvalue I. 
There are no other eigenvectors. 

Case 2: IJ = O. In this case, Ri = I, so I is the only eigenvalue and every 
vector in 1R3 is an eigenvector corresponding to this eigenvalue. 

Case 3: IJ = 'IT. The characteristic equation of R; is 

(1 - t)( - 1 - 1)2 = 0 

with roots t = 1 and t = - 1, so the eigenvalues of R; are 1 and - 1. 

Exercise 6. Find the eigenvectors of It" which correspond to the eigenvalue - I. 
Describe, in geometrical terms, how R;X is obtained from X if X is any vector. 
Then explain, geometrically, why I and - 1 occur as eigenvalues of R;. 

Now let A be a given linear transformation and let 

- t3 + at2 + ht + c = 0 
be the characteristic equation of A. 
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Define f( t) = - t3 + at2 + ht + c. Then f is a function defined for all real 
t. The equationf(t) = 0 must have at least one real root to. To see this, note 
that f(t) < 0 when t is a large positive number, while f(t) > 0 when t is a 
negative number with large absolute value. Therefore, at some point to, the 
graph of f must cross the t-axis. Dividingf(t) by t - to, we get a quadratic 
polynomial - t2 + dt + e, where d and e are certain constants. Thus 

f(t) = (t - to)( - t2 + dt + e). 

The polynomial g(t) = - t2 + dt + e may be factored 

g(t) = -(t - tl)(t - t2), 

where t I' t2 are the roots of g, which may be real or conjugate complex 
numbers. We can distinguish three possibilities. 

(i) t I' t2 are complex numbers, t 1 = U + iv, t2 = U - iv, with v =I' O. Then 
f(t) = 0 has exactly one real root, namely, to. In this case, the graph of 
f appears as in Fig. 3.14. 

EXAMPLE 6. For A = Ri, we found in Example 5, 

f(t)=(t-l)[ -(sinOi-(cosO- t)2]. 

Here g(t) = [-(sinO)2 - (cosO - t)2] = - t 2 + 2(cosO)t - 1. If 0 =I' 0 or 'fT, 

then g has no real roots, so possibility (i) occurs. 

(ii) t1 and t2 are real and t1 = t2. If to = t1 = t2, then f(t) = 0 has a triple 
root at to. The graph of f now appears as in Fig. 3.15. If to =1= t 1, then 
f has one simple real root, to, and one double real root, t1 = t 2. The 
graph of f appears as in Fig. 3.16. 

Figure 3.14 
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Figure 3.15 

EXAMPLE 7. For A = R;, we found 

1(1) = (I - t)( - 1 - t)2, 

so to = 1, t) = t2 = -I, and possibility (ii) occurs. 
For A = DA, we have 

A-I 
1(/) = 0 

o 
so to = I) = 12 = A. 

o 
A-I 

o 

Figure 3.16 
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I, = 1, 
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Figure 3.17 

(iii) t 1 and t2 are real and t 1 =1= t2. If t 1 = to or t2 = to' the situation is as in 
case (ii). If t 1 =1= to and t2 =1= to, then the equation f( t) = 0 has the three 
distinct real roots to, t1, and t2. The graph of f now appears as in Fig. 
3.17. 

EXAMPLE 8. The transformation T of Example 4 had 1,2, and 7 as the roots 
of its characteristic equation and, so, illustrated case (iii). 

Let us summarize what we have found. Using Theorem 3.9 we can 
conclude: 

Proposition 1. If A is a linear transformation oflR3, then A always has at least 
one eigenvalue and may have one, two, or three distinct eigenvalues. 

Exercise 7. Find all eigenvalues and eigenvectors of the transformation whose 

matrix is (~ ~ ~). 
100 

Exercise 8. Let T be the transformation with matrix (~ ~ ~ ). 

(i) Find the characteristic equation of T. 
(ii) Show that c is the only eigenvalue of T. 
(iii) Show the eigenvectors of T corresponding to this eigenvalue fill up a plane 

through 0, and give an equation of this plane. 
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Exercise 9. 

(i) Find the characteristic equation for the transformation with matrix 

( g 6 ~). 
a) a2 a3 

(ii) Show that given any three numbers a, h, c, there is some linear transformation 
of 1R3 whose characteristic equation is - t 3 + at2 + ht + c = o. 

Lei A be a linear transformation of 1R3 and let t be an eigenvalue of A. By 
the eigenspace E, we mean the collection of all eigenvectors of A which 
correspond to the eigenvalue t. 

EXAMPLE 9. Let P be the linear transformation which projects each vector 
on the plane 7T through the origin. Then for each vector X in 7T, P(X) = X, 
while for each X perpendicular to 7T, P(X) = O. P has no other eigenvectors. 
Hence, here E. = the plane 7T, Eo = the line through 0 perpendicular to 7T. 

Let A be an arbitrary linear transformation of 1R3 and t an eigenvalue of 
A. If X is a vector belonging to the eigenspace E" then A (X) = tX. Hence, 
for each scalar c, A (cX) = cA(X) = ctX = t(cX), and so cX is also in 
E,. Thus E, contains the line along X. If E, is not equal to this line, then 
there is some Y in E, such that X and Yare linearly independent. For each 
pair of scalars c.' C2' A(c.X + c2Y) = c.A(X) + c2A(Y) = c.tX + c2tY 
= t(c.X + c2Y). Thus c.X + c2Y is in E,. So the entire plane 

{( c.X + c2Y) I c. 'C2 in IR} 

is contained in E,. If E, does not coincide with this plane, then there is 
some vector Z in E, such that X, Y, Z are linearly independent. By 
Proposition I of Chapter 3.0, {c.X + c2Y + c3z1 C., c2 , C3 in IR} is all of 1R3 
and this set is contained in E,. So, in that case, E, = 1R3. We have shown: 

Proposition 2. If A is a linear transformation of 1R3, each eigenspace of A is 
either a line through the origin, or a plane through the origin, or all of 1R3. 

§2. Isometries of 1R3 

In Chapter 2.5 we found all the length-preserving linear transformations of 
the plane. They turned out to be the rotations and reflections of the plane. 
Let us try to solve the corresponding problem in 3-space. 

A linear transformation T of 1R3 which preserves lengths of segments is 
called an isometry. Exactly as in 1R2, we find that T is an isometry if and 
only if 

IT(X)I = IXI for every vector X. (5) 
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Proposition 3. An isometry T preserves the dot product, i.e., for all vectors 
X, Y, 

T(X) . T(Y) = X . Y. 

PROOF. Since (5) holds for each vector, 

IT(X - Y)12 = IX _ YI2 

or 

(T(X - y». (T(X - Y» = (X - y). (X - V). 

So 

(T(X) - T(Y»· (T(X) - T(Y» ~ (X - y). (X - Y) 

or 

T(X) . T(X) - 2 T(X) . T(Y) + T(Y) . T(Y) = X . X - 2X . Y + Y . Y. 

Again by (5), T(X)· T(X) = X . X and similarly for Y, so cancelling we get 

-2T(X) . T(Y) = -2X· Y, 

and so 

T(X) . T(Y) = X . Y. 

Proposition 4. If T is an isometry of 1R3, then T has I or - I as an eigenvalue 
and has no other eigenvalues. 

PROOF. Every linear transformation T of 1R3 has an eigenvalue t, so for 
some vector X =1= 0, T(X) = tX. Then 

IXI = IT(X)I = ItXI = It I lXI, so It I = I. 

Hence 

t = I or t = -I. 

Proposition 5. If T is an isometry of 1R3, then det(T) = I or det(T) = -I. 

Note: We write det(T) for det(m(T», the determinant of the matrix of T. 

PROOF. Consider the cube Q with edges E 1, E2, E3 • The vectors T(E 1), 

T(E2), T(E3) are edges of the image, T( Q), of Q under T. For each i, 
I T(E)I = IE;I = I, and for each i, j with i =1= j, T(EJ· T(I1) = E; . Ej = O. 
Thus T( Q) is a cube of side 1. Hence, vol(T( Q» = I = vol Q. Also, by 
Theorem 3.6 of Chapter 3.5, vol T( Q) = Idet(T)I' vol Q. Hence Idet(T)1 
= I. So det T = I or det T = - l. 

One example of an isometry is a rotation about an axis. Fix a vector F 
and denote by 7T the plane through 0 orthogonal to F. Fix a number O. We 
denote by R(J the transformation of the plane 7T which rotates each vector in 
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F 

y 

SF 

Figure 3.18 

'IT counterclockwise by an angle (J about F. Let Y be any vector in \R3• We 
decompose Y as 

Y=Y'+ sF, 
where Y' is the projection of Y on 1t and s is a scalar (see Fig. 3.18). We 
now define 

T(Y) = Ro(Y') + sF. 

Note that T(Y) lies in the plane through Y perpendicular to F. We call the 
transformation T a rotation about the axis F by the angle (J. 

Exercise 10. Prove that T is a linear transformation of 1R3 and that T(F) = F. 

For each Y, I T(Y)12 = IRo(Y') + sFI2 = (Ro(Y') + sF) . (Ro(Y') + sF) = 
IRo(Y'W + s21F12, since Ro(Y') is orthogonal to F. Also, IYI2 = IY'12 + s21F12. 
Since Ro is a rotation of 'IT, I Ro(Y')1 = IY'I, and so I T(YW = IYI2• Thus Tis 
an isometry. 

Now choose orthogonal unit vectors XI' X2 in 'IT such that XI X X2 = F. 
Then the triplet XI' X2 , F is positively oriented. The triplet of vectors T(XI), 
T(X2), F is also positively oriented, and so T preserves orientation. The 
proof is contained in Exercise 11. 

Exercise 11. 

(a) Express T(X I ) and T(X2) as linear combinations of XI and X2 with coefficients 
depending on 8. 

(b) Compute (T(X I ) X T(X2» . F and show it equals (XI X X2)· F and hence is 
positive. Thus T preserves orientation. 

(c) Using Theorem 3.5 of Chapter 3.5, conclude that det T > O. 

Since T is an isometry, det T = ± I and so, since det T > 0, det T = 1. In 
sum, we have proved: 
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Proposition 6. If T is a rotation about an axis, then T is an isometry and 
det T = 1. 

What about the converse of this statement? Suppose T is an isometry 
with det T = 1. Let F be an eigenvector of T with IFI = 1 and T(F) = tF. By 
Proposition 4, we know that t = ± 1. We consider the two cases separately. 
Let us first suppose t = 1. Then 

T(F) = F. 

Let 'fT be the plane orthogonal to F and passing through the origin. If X is 
a vector in 'fT, 

T(X) . F = T(X) . T(F) = X . F = 0, 

so T(X) is orthogonal to F. Hence T(X) lies in 'fT. Thus T transforms 'fT into 
itself (see Fig. 3.19). Let us denote by T" the resulting transformation of the 
plane 'fT. T., is evidently a linear transformation of 'fT and an isometry of 'fT 

since T has these properties on 1R3. In Chapter 2.5 we showed that an 
isometry of the plane is either a rotation or a reflection. Hence either T., is a 
rotation of 'fT through some angle (J or T., is a reflection of 'fT across a line in 
'fT through the origin. 

Case 1: T., is a rotation of 'fT through an angle (J. By the discussion 
following after Proposition 5, we conclude that T is a rotation of 1R3 about 
the axis F. 

Case 2: T., is a reflection across a line in 'fT. In this case there exist nonzero 
vectors XI' X2 in 'fT with T,,(XI) = Xp T,,(X2) = - X2 , and we can choose 

Figure 3.19 
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these vectors so that the triplet XI' X2, F is positively oriented. Also, 
T(X I ) = T,,(X I ) = XI and T(X2) = T,,(X 2) = - X2, so the triplet T(X I ), 

T(X2), T(F) is the triplet XI' - X2 , F which is negatively oriented. But 
det T = 1 by hypothesis, and so we have a contradiction. Thus Case 2 
cannot occur. We conclude: If t = 1, then T is a rotation about an axis. 

Now let us suppose that t = -1, so T(F) = - F. We again form the plane 
17 orthogonal to F and the transformation T" of 17 on itself. As before, T" is 
either a rotation of 17 or reflection in a line of 17. 

Suppose T" is a rotation of 17 by an angle O. Choose orthogonal unit 
vectors XI' X2 in 17 such that XI' X2 , F is a positively oriented triplet. Then 
the triplet T,,(X I ), T,,(X2), F is again positively qriented. 

Exercise 12. Prove this last statement by calculating (T,,(X,) X T,,(X2» . F and 
showing that it is positive. 

It follows that the triplet T,,(X I ), T,,(X2), - F is negatively oriented. But 
this is exactly the triplet T(X I ), T(X2), T(F). Since XI' X2 , F was a 
positively oriented triplet, this contradicts the fact that det T = 1. Hence T" 
is not a rotation of 17 so it must be a reflection of 17. Therefore we can find 
orthogonal unit vectors XI' X2 in 17 with T,,(X I ) = - X" T,,(X2) = X2• Now 
consider the plane 'Tt' determined by the vectors F and Xl (see Fig. 3.20). 
We note that since T(F) = - F and T(X I ) = T,,(X I ) = - XI' T coincides on 
the plane 17' with minus the identity transformation. Thus T rotates the 
vectors of 17' by 1800 about the X2-axis. Also, T(X2) = T,,(X2) = X2 • Hence 
T acts on 1R3 by rotation by 1800 about the Xraxis. 

In summary, we have proved: 

Theorem 3.9. Let T be an isometry of 1R3 and let det T = I. Then T is rotation 
about an axis. 

F 

I 
~ T(F) =-F 

Figure 3.20 
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Let Sand T be two isometries of \R3• What can be said about their 
product ST? 

Exercise 13. 

(a) If Sand Tare isometries, then ST and TS are also isometries. 
(b) If S is an isometry, then S -I also is an isometry. 

Exercise 14. If S is rotation about an axis and T is rotation about a possibly 
different axis, then ST is rotation about an axis. 

Note: If the axes for S and for T are distinct, our conclusion that ST is again a 
rotation about some axis, though correct, is by no means evident. 

Exercise 15. Let S be rotation by 90° about the x3-axis and T be rotation by 90° 
about the xI-axis. Find the axes for the rotations ST and TS. 

Exercise 16. Let T be an isometry with det T = -\. 

(a) Show that - T is a rotation. 
(b) Conclude that T is the result of first performing a rotation and then reflecting 

every vector about the origin. 

§3. Orthogonal Matrices 

In Chapter 2.5, we found that a 2 X 2 matrix m is the matrix of an isometry 
if and only if it has one of the following forms: 

(i) 

(ii) 

( COS 0 
sin 0 

( COS 0 
sin 0 

- SinO), 
cosO 

sin 0 ) 
- cosO . 

Note that in each case the columns are mutually orthogonal unit vectors \R2• 

It turns out that the analogous statement is true in 3 dimensions. Let 

Exercise 17. Assume m is the matrix of an isometry T. 

11 if i = j, 
(a) Show T(E,) . T(E) = 1 .;; i,j .;; 3. 

o if i=/=j, 
(b) Show that the columns of m are orthogonal unit vectors in 1R3. 

Exercise 18. Assume m is the matrix of an isometry. Show that the inverse m- I 

equals the transpose m *. 
Exercise 19. Show that, conversely, if m is a matrix satisfying m- I = m*, then m is 

the matrix of an isometry. 
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A matrix m such that 

(6) 

is called an orthogonal matrix. Exercises 18 and 19 together prove the 
following result: 

Proposition 7. A 3 x 3 matrix m is the matrix of an ·isometry if and only if m 
is an orthogonal matrix. 

Exercise 20. Let Ri be rotation around the x3-axis by an angle B. Let m = m(Ri). 
Directly show that m satisfies (6). 

Exercise 21. Let T be reflection in the plane x + Y + z = O. Let m = m( T). Directly 
show that m satisfies (6). 

Exercise 22. Let S be rotation by 1800 around the line: x = t, Y = t, Z = t. Let 
m = m(S). Directly show that m satisfies (6). 

Exercise 23. Let m be an orthogonal matrix. 

(a) Show that m* is an orthogonal matrix. 
(b) Show that the rows of m are orthogonal unit vectors in [R3. 

Exercise 24. Show that the product of two orthogonal matrices is an orthogonal 
matrix. 

Exercise 25. Consider the system of equation 

{ 
allxl + a12x 2 + a13x3 = YI , 
a21 x I + a22x 2 + a23x 3 = Y2, 

a31 x I + a32x 2 + a33x 3 = Y3· 

Assume the coefficient matrix 

( ~~: ~~~ ~~:) 
a31 a32 a33 

(7) 

is an orthogonal matrix. Show that, given YI> Y2, j), the system (7) is solved by 
setting 

{
XI = allYl + a21Y2 + a31Y3, 

X2 = al2YI + a22Y2 + a32Y3 , 

X3 = al3YI + a23Y2 + a33Y3. 

(8) 

Exercise 26. Let m be a 3 X 3 matrix. Assume that the column vectors of mare 
orthogonal unit vectors. Prove that m is an orthogonal matrix. 



CHAPTER 3.7 

Symmetric Matrices 

In the 2-dimensional case, we saw that a special role is played by matrices 

(~ ~) which have both off-diagonal elements equal. The corresponding 

condition in 3 dimensions is symmetry about the diagonal. We say that a 
matrix is symmetric if the entry in the ith position in the jth column is the 
same as the entry in the jth position in the ith column, i.e., aij = aji for 
all i,j, 

(I) 

Note that this condition does not place any restriction on the diagonal 
elements themselves, but as soon as we know the elements on the diagonal 
and above the diagonal, we can fill in the rest of the entries in a symmetric 
matrix: 

If the following matrix is symmetric, 

[
I 2 
x 7 
Y z Yl 

then x = 2, Y = - I, Z = o. 
We may express the symmetry condition succinctly by using the notion 

of transpose. Recall that the transpose m* of a matrix m is the matrix whose 
columns are the rows of m. Thus a matrix m is symmetric if and only if 

m*= m. 
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Exercise 1. For which values of the letters x, y, z, will the following matrices be 

symmetric? 

(a) (; 
2 1), 2 
z 

(b) (; 
5 

~). I 
4 

(c) (~ 
'5 n, y 
I 

(d) ({ 
x 

:). 2 
z 

(e) (i y ;). x 
6 

Exercise 2. Show that every diagonal matrix is symmetric. 

Exercise 3. Show that if A and B are symmetric, then A + B is symmetric and cA is 
symmetric for any c. 

Exercise 4. True or false? If a and b are symmetric, then ab is symmetric. (Show 
that (ab)* = b*a*). 

Exercise 5. Show that if a is any matrix, then the average !(a + a*) is a symmetric 
matrix. 

Exercise 6. True of false? The square of a symmetric matrix is symmetric. 

Exercise 7. Prove that for any 3 X 3 matrix m, the product m(m*) is symmetric. 
(Recall that (mn)* = n*m*.) 

We shall need a general formula involving the transpose of a matrix. 
Let a be any matrix. 

Then 

Lemma 1. Let A be the linear transformation with matrix a and A * the linear 
transformation with matrix a*. Then for every pair of vectors X, Y, 

A(X)· Y = X· A*(Y). (2) 
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PROOF OF UMMA I. Set X - [;:J. y - [m. Then 

A (X) . Y = [:~:~: : :~~~~ : :~:~:l' [~~l 
a31 x I + a32x2 + a33x3 Y3 

allxlYI + a12x2YI + al3x3YI 
= + a21x IY2 + a22x2Y2 + a23x3Y2 . 

+a31x 1Y3 + a32x2Y3 + a33x3Y3 

= [~~l' [::~~: : :~~~~: :~~~~l 
X3 a13YI + a23Y2 + a33Y3 

allxlYI + a2l x lY2 + a31 x IY3 

(3) 

= + al2x2YI + a22x2Y2 + a32x2YJ . (4) 
+ al3x3YI + a23x3Y2 + a33x3Y3 

The first line of the sum (3) is the same as the first column of (4), and 
similarly for the other two lines. So the sums (3) and (4) consist of the same 
terms in different arrangements, and thus A (X) . Y = X . A *(Y). 

An immediate consequence of Lemma I is: 

Lemma 2. If m is a symmetric matrix, and M is the corresponding linear 
transformation, then for all vectors X, Y, 

M (X) . Y = X . M (Y). (5) 

We saw in Theorem 2.10 in Chapter 2.6, that eigenvectors of a symmetric 
2 X 2 matrix corresponding to distinct eigenvalues are orthogonal. We now 
prove the analogous result in 3 dimensions. 

Theorem 3.10. Let m be a symmetric 3 X 3 matrix and let M be the 
corresponding linear transformation. Let tl , t2 be distinct eigenvalues of M, 
and let XI' X2 be corresponding eigenvectors. Then XI . X2 = O. 

PROOF. 

Then by (5), 

M(XI)' X2 = (fIXI), X2 = tl(XI . X2), 

XI' M(X2) = XI . (t2X2) = t 2(XI . X 2)· 
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If XJ . X2 =F 0, we can divide by XJ . X2 and get t J = t 2 , which contradicts 
our assumption. Therefore XJ • X2 = O. 

EXAMPLE I. Let us calculate the eigenvalues and eigenvectors of the linear 
transformation M with matrix 

m = [: 6 ~ I]. 
- I 0 0 

The characteristic equation of m is 

or 

i.e., 

1 - t 

I - t 
-I 0 

- 1 
o = (I - t)t 2 - I( - t) - I( - t) = 0 
-t 

- t(t2 - t - 2) = O. 

Since t 2 - t - 2 = (t - 2)(t + I), the eigenvalues of mare 

tJ=O, t2 =2, t3=-1. 

Let Xj denote an eigenvector corresponding to tj , for i = I, 2, 3. 

M(XJ) = OX J = 0, 

so setting 

or 

x+y - z = 0, 

x =0, 
-x =0. 

Therefore x - 0, y - " '0 X, - m i, an eigenvector cmmponding to I,. 

Similarly, if 

[ 
I I 
I 0 
-I 0 

so 

x+y - z = 2x, 
x =2y, 

-x = 2z. 
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Setting x = 2, we must take y = 1 and z = - 1. Then x + y - z = 2 + 1 + 1 

- 4 - 2x, so the fi"t equation is also satisfied, Thus X, - [ J Il Similarly 

we find X, - [ ~ 1] is an eigenvecto, co".,ponding to I, - -1. Each pa;, 

of two out of our three eigenvectors 

is indeed orthogonal, as stated in Theorem 3.10. 

Note: The eigenvectors corresponding to a given eigenvalue fill a line in 
this case. For instance, the set of eigenvectors of m corresponding to t2 = 2 
is the set of all vectors 

- 00 < t < 00. 

Exercise 8. Find the eigenvalues of the matrix m = ( ~ i ~) and find all corre­

sponding eigenvectors. 

Every 3 X 3 matrix has at least one eigenvalue, as we showed in Proposi­
tion 1 of Chapter 3.6. However, in general, we cannot say more. 

Exercise 9. Give an example of a 3 X 3 matrix having as its only eigenvalue the 
number I and such that the corresponding eigenvectors make up a line. 

For symmetric matrices, the situation is much better, as the following 
fundamental theorem shows: 

Spectral Theorem in 1R3. Let m be a symmetric 3 X 3 matrix and let M be the 
corresponding linear transformation. Then we can find three orthogonal unit 
vectors Xi' X2, and X3 such that each Xi is an eigenvector of M. 

PROOF. M has at least one eigenvalue t l , as we know. Let XI be a 
corresponding eigenvector of length I. Denote by 17 the plane through the 
origin which is perpendicular to XI' We wish to show that we can find two 
further mutually perpendicular eigenvectors of M lying in 17. We claim that 
17 is invariant under M, i.e., that if a vector X is in 17, then M(X) also lies in 
n (see Fig. 3.21). Suppose X belongs to n. Then by (5), 

M(X)· XI = X· M(XI) = X· tlX I = tl(X' XI)' 
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X, 

X 

M(X) 

Figure 3.21 

But X· X, = 0, since X lies in 'IT. Hence M(X)· X, = 0, so M(X) is in 'IT, and 
our claim is proved. 

We denote by A the transformation of 'IT defined by 

A (X) = M(X) for X in 'IT. 

We shall now go on to show that 'IT may be identified with the plane 1R2. 
Also, when we make this identification, A turns into a linear transformation 
of 1R2 having a symmetric matrix. Using the results we found in Chapter 2.6, 
we shall then find two eigenvectors for this 2 X 2 symmetric matrix and 
these will turn out to give the "missing" eigenvectors in 1R3 for our original 
transformation M. 

Let F" F 2 be vectors in 'IT which are orthogonal and have length 1. If X 
and Yare vectors in 'IT, 

A (X) . Y = M (X) . Y = X . M (Y) = X . A (Y), 

so A satisfies 

A (X) . Y = X . A (Y) (6) 

whenever X', Y lie in 'IT. Each vector X in 'IT can be expressed as 

X = x,F, + X2F2, 

where x, = X· F" X 2 = X· F2• We identify X with the vector (~~) in 1R2, 

and in this way 'IT becomes identified with 1R2. Also, since A takes 'IT into 
itself, A gives rise to a linear transformation AO of 1R2. For each X = x,F, + 
x2F2 in 'IT, A (X) is identified with AO(~~) in 1R2 (see Fig. 3.22). What is the 

matrix of AO? Since A(F,) and A (F2) lie in 'IT, we have 

A(F,) = aF, + bF2 , 

A (F2) = cF, + dF2 , 
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e­
X 

(6), we get 

e-­
A(X) 

Figure 3.22 

b = A (FI) . F2 = FI . A (F2) = c. 

Choose X = xlFI + x 2F2 and set 

A (X) = xlFI + xJF2. 

Then AO( ~~) = (:1). Also, 

A (X) = xIA(FI) + x2A(F2) = xl(aF I + bF2) + xicFI + dF2) 

= (axi + cX2)F1 + (bxl + dX2)F2. 
Hence, 

AO(XI) = (x!) = (axi + CX2) = (a C)(XI). 
x2 x2 bx I + dX2 b d X2 

(7) 

Thus the matrix of AO is (~ ~) = (~ ~), because of (7). We note that AO 

has a symmetric matrix. By Theorem 2.10, Chapter 2.6, there exist two 

orthogonal nonzero eigenvectors (:~) and (~~) for A 0. Then, for a certain 

scalar t, A o(:~) = t( ~~). 
The vector V= ulFI + U2F2 in 'fT is identified with (:~) and A(V) is 

identified with A O( :~) = t(:~) in JR2. Also, tV is identified with t(:J. So 

M(V) = A (V) = tV, and so V is an eigenvector of M lying in 'fT. Similarly, 
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v = v]F] + v2F2 is an eigenvector of M lying in '!T. Finally, 

U· V = (u]F] + u2F2)· (v]F] + V2F2) = u]v] + U2V2 = (~~). (~~) = o. 

It follows that the three vectors 
U V 

TUr' M 
are an orthonormal set in [R3 consisting of eigenvectors of M. 

Nole: Although we have just shown that the transformation M has three 
mutually orthogonal eigenvectors X]' X2 , X3 , we have not shown that the 
corresponding eigenvalues are distinct. Indeed, this need not be the case. If 

M is the linear transformation with matrix 0 1 0, then M has only two [1 0 0] 
002 

distinct eigenvalues, 1 and 2, although it has three orthogonal eigenvectors 
E], E2, E3 • Here, E] and E2 both correspond to the eigenvalue 1, while E3 
corresponds to the eigenvalue 2. 

EXAMPLE 2. Let us find all eigenvalues and eigenvectors for the linear 
transformation M with matrix 

m ~ [~ ! n 
The characteristic equation is 

1 - I 0 5 
o 1-13 =(1-1)[(1-1)2- 9]+5(-5(1-1))=0 
5 3 1 - I 

or (l - 1)[(1 - If - 9 - 25] = o. So the eigenvalues are I] = 1 and the roots 

of (l - If - 34 = 0, which are 12 = 1 + f34 and 13 = 1 - f34. We seek an 

eigenvector X] = ( ~) corresponding to I = 1. So we must solve 

Mm~mi.e.,[~ ! l]m~mo, 
x + 5z = x, 
Y + 3z = y, 

5x + 3y + z = z. 

The first two equations give z = O. Then the third gives 5x + 3y = O. 
Hence, x = - 3, Y = 5, z = 0 solves all three equations. So we take 

x'~[g3l 
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The plane 'fT through the origin and orthogonal to X" which occurred in 
the proof of the Spectral Theorem, here has the equation 

[;]. [1l-3X+5ro 0' y-lx. 

By the proof of the Spectral Theorem, we can find in 'fT a second eigenvec­

tor X2 of M, corresponding to t2 = 1 + f34. X2 = ( ;) satisfies 

(8) 

since X2 is on 'fT. Also, 

M(X,l-(I+J34)X, m [~ ! m:]-(l+J34)[H 
so 

x + 5z = (1 +f34)x, (9) 

as well as two further equations. However, Eqs. (8) and (9) suffice to give 

so 

3 y= Sx, f34 
z ='-5-x, 

[
X [ x ] [I] X2 = Y = (3/5)x = x 3/5 

z (f34 /5)x f34 /5 

In particular, taking x = 5, we find 

X,- [k 1 
Each scalar multiple tX2 is an eigenvector of M corresponding to 

12 = 1 + f34. An eigenvector X3 corresponding to 13 = 1 -134 will be 
orthogonal to both XI and X2, as we know by the Spectral Theorem. 
Hence, X3 is a scalar multiple of XI X X2• 

XI XX2 = ~3 X[~ = ~:]=f34 ~ ]. 
o f34 - 34 -134 

So we can take X3 = [ ~ 1 as eigenvector for 13 = 1 - f34. 
-134 
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Note: The eigenvectors XI' X2 , X3 do not have unit length. However, the 
vectors XI/lXii, etc., are also eigenvectors and do have unit length. 

Exercise 10. For each" of the following matrices, find an orthonormal set X I, x2 , X3 
in 1R3 consisting of eigenvectors of that linear transformation with matrix m. 

(-4 0 0) 
(a) m = 0 2 3 , 

o 3 2 

( 
I I I) (b) m = I I I , 
I I I 

ff 0 0 1 
(c) m = 0 {J o· 

o 0 {5 

In Chapter 2.7, Theorem 2.11, we showed that if a 2 x 2 matrix m has 
two linearly independent eigenvectors corresponding to the eigenvalues t" 
t2 , then 

m = pdp-I, 

where d is the diagonal matrix (t I 0) and p is a certain invertible matrix. 
o t2 

We shall now prove the corresponding fact in 1R3. 

Theorem 3.11. Let M be a linear transformation having linearly independent 
eigenvectors X" X2 , X3 corresponding to eigenvalues t l , t2, t3' Let m be the 
matrix of M. Denote by p the matrix (XI I X2 1 X3) whose columns are the 

vectors Xi' Then p is invertible and, setting d = ci ~ ~ l' 
o 0 t3 

(10) 

PROOF. Since XI' X2, X3 are linearly independent by hypothesis, the matrix 

p has an i.v«se, by (ix), p. 166. We set E, - [H E, - [U E, - [H Let P 

be the linear transformation with matrix p. Then 
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transformation with matrix d, 

Similarly, PD(E2) = t2X2 and PD(E3) = t3X3' Thus the transformations MP 
and PD give the same results when acting on E .. E2 , E3 , and so MP = PD. 
Hence, M = PDP-I, and m = pdp-I. 

Corollary 1. Let m be a symmetric 3 X 3 matrix and let M be the correspond­
ing linear transformation. Let t I' t2, t3 denote the eigenvalues of M, and set 

d = [~ ~ ~. Then there exists an orthogonal matrix r of 1R3 such that 

o 0 t3 

(11 ) 

PROOF. By the Spectral Theorem, M has eigenvectors XI' X2 , X3 with 
eigenvalues t l , t2, t3 such that XI' X2, X3 form an orthonormal set in 1R3. In 
particular, XI' X2 , X3 are linearly independent, and so we can make use of 
Theorem 3.11. We set r = (XI IX2 IX3). By Theorem 3.11, m = rdr- I. The 
only thing left to prove is that r is an orthogonal matrix. But the columns of 
r are orthonormal vectors, so by Exercise 26 of Chapter 3.6, r is an 
orthogonal matrix. 

EXAMPLE 3. In Example 2, we studied the matrix m ~ [~ ! n and found 

the eigenvalues tl = 1, t2 = 1 + ~34, t3 = 1 - ~34 and corresponding 
(normalized) eigenvectors 

x, ~ ~ [~31' X,~ ks [k ' X,~ ks [-kl 
-3/{34 5/168 5/168 

Here r = (XI I X2 1 X3) = 5/{34 3/168 3/168 . Formula (11) gives 

0 I/fi -l/fi 

[~ 
0 

~] ~ ,[~ 
0 0 

1 +{34 0 -I r . 

3 0 1 -{34 

We note a useful consequence of formula (11). 
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Corollary 2. Let m be a symmetric 3 X 3 matrix with eigenvalues t l , t2, 13' 

Let r be the matrix occurring in (II). Then for each positive integer k, 

o 
(12) 

(I 0 5) 
Exercise 11. Use (12) to find m5, where 0 I 3 is the matrix of Example 3. 

5 3 I 

Exercise 12. For each of the matrices m in Exercise 10, obtain the form (I I). 



CHAPTER 3.8 

Classification of Quadric Surfaces 

A quadric surface is the 3-dimensional generalization of a conic section. 
Such a surface is determined by an equation in the variables x, y, z so that 
each term is of second degree; for example, 

x 2 + 2xy + 3z2 = I. 
The general form of the equation of a quadric surface is 

ax2 + 2bxy + 2cxz + dy2 + 2eyz + fz2 = I, (I) 

where the coefficients a, b, c, d, e, and f are constants. We would like to 
predict the shape of the quadric surface in terms of the coefficients, much 
in the same way that we described a conic section in terms of the 
coefficients of an equation 

ax2 + 2bxy + cy2 = I 
in two variables. 

As in the 2-dimensional case, we may use the inner product and a 
symmetric matrix in order to describe the quadric surface. We may then 
use our analysis of symmetric matrices in order to get a classification of the 
associated quadric surfaces. 

We denote by A the linear transformation with matrix 

so that 

m - [~ ; ~l and X - m 
A(X) = [:~::: :~l 

cx + ey + fz 
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and 
X . A (X) = ax2 + byx + czx + bxy + dy2 + ezy + cxz + eyz + f z2 

= ax2 + 2bxy + 2cxz + dy 2 + 2eyz + fz2. 

We can therefore express relation (I) as 

x· A (X) = 1. 
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Observe that m is a symmetric matrix. Consider some examples: If m is a 
diagonal matrix so that 

[
a ° 0] 

m= ° d 0, 

° ° f 
then the equation has the form 

ax2 + dy2 + fz2 = 1. 

If a = d = f = (1/ r)2 for some r > 0, then the equation becomes 

x 2 + y2 + Z2 = r2, 

and this is a sphere of radius r. 
If a, d, and f are all positive, then we may write 

and we have the equation 

x2 y2 Z2 
-+-+-=1 a2 p 2 y2 . 

This gives an ellipsoid with axes along the coordinate axes of 1R3. 
If a and d are positive and f is negative, then 

andf= -1/y2 for some a, p, y; so the equation becomes 

x2 y2 z2 
-+---=1 a2 p2 y2 . 

This is a hyperboloid of one sheet. 
If a > 0, but d < 0, f < 0, then 

d= _(_1 ) 
p2 ' f= -( ~2) for some a, p, 'Y, 

so the equation becomes 

x2 y2 Z2 
-----=1 a2 p2 y2 . 

This is a hyperboloid of two sheets. 
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If a < 0, d < 0, f < 0, there are no solutions, since the sum of three 
negative numbers can never be 1. 

What if one or more of the diagonal entries are zero? If f = 0, we have 
ax 2 + dy 2 = 1, and this is either an elliptical cylinder (if a > 0, d > 0), a 
hyperbolic cylinder (if a > 0, d < 0), or no locus at all if a < 0, d < O. 

If f = 0 and d = 0, and a > 0, then we have ax 2 = 1, and this is a pair of 
planes x = ± Il{ci . 

If a = 0 = d = f, we have no locus. 
This completes the classification of quadric surfaces corresponding to 

diagonal matrices. 
What if the matrix m is not diagonal, or, in other words, if one of the 

cross-terms in Eq. (1), 2bxy, 2cxz, 2eyz, is nonzero? 

In this case, we shall introduce new coordinates (~) for each vector 

(;) in such a way that, expressed in terms of u, v, w, Eq. (1) takes on a 

simpler form. Recall that by formula (11) of Section 3.7, there exists an 
orthogonal matrix r such that 

m = rdr-I, 

where d = 0 t2 0 is the diagonal matrix formed with the eigenvalues [
tl 0 01 

o 0 t3 

t I> t2 , t 3 of A. In other words, we have 

A = RDR- I , (2) 

where Rand D are the linear transformations whose matrices are rand d. 
Note that since r is an orthogonal matrix, R is an isometry. 

If X = ( ;) is any vector, let U = ( ~) be the vector defined by 

(3a) 

We regard u, v, w as new coordinates of X. Then 

X = R(U). (3b) 

By (2), A (X) = (RDR -I)(X) = RD(U), so X· A (X) = R(U) . R(D(U». 
Since R is an isometry, the right-hand side equals U· D(U) = 

[
tl 0 01 G)· ~ ci ~ (~) ~ I,U' + I,v' + I,w'. Expressing X· A (X) in terms 

of x, y, z, we get: 
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Theorem 3.12. 

axz + 2bxy + 2cxz + dy2 + 2eyz + jzZ = IIU2 + 12v2 + 13Wz. (4) 

The quadric surface defined by' (1) thus has, as its equation in u, v, W, 

t l U2 + tzv2 + t3w2 = 1. (5) 

Note: The new coordinates (~) of a vector X = ( ~) are actually the 

coordinates of X relative to a system of orthogonal coordinate axes. Since R 
is an isometry, the vectors R(EI), R(E2), R(E3) are three mutually orthogo­
nal unit vectors in 1R3. 

V = ( ~) = uEI + vEz + wE3 , 

so 
X = R(V) = uR(EI) + vR(E2) + wR(E3)' 

Thus ( ~) are the coordinates of X in the system whose coordinate axes lie 

along the vectors R(EI), R(E2), R(E3)' 

EXAMPLE 1. We wish to classify the quadric surface 

~: x 2 + 2xy - 2xz = 1. 

The corresponding symmetric matrix m here is [~ b -0 I]. By Exam-
- I 0 0 

pie I of Chapter 3.7, the eigenvalues of m are II = 0, t2 = 2, 13 = -1. We 
introduce new coordinates u, v, w as described above. By (5), we find that 
an equation for ~ in the new coordinates is 

2v2 - W Z = 1. (6) 
Hence ~ is a hyperbolic cylinder. 

Question: How do we express the new coordinates (~) of a point 

X = (~) in terms of the original coordinates here? We found in Example 1, 

Chapter 3.7, that the normalized eigenvectors of the matrix m = 

[ ~ b -oI]are 
-1 0 0 

XI = _1 [~], 
fil 

X2 = _1 [i ], 
16 - 1 X,- ~ [->l 
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By the way the matrix r occurring in (11) of Chapter 3.7 was obtained, we 
now have 

0 2 I 

.f6 f3 
I I __ I 

r= 
Ii .f6 f3 
I __ 1 1 

Ii .f6 f3 
Since r is an orthogonal matrix, we have 

0 1 1 

Ii Ii 
r- I = r* = 2 I __ I 

.f6 .f6 .f6 
I __ I 1 

f3 f3 f3 

If X is any vector, (~) are its old coordinates and (~) its new coordi-

nates, then by (3a), 

u x 0 1 I x 
Ii Ii 

v = R- 1 Y 
2 I __ 1 

Y (7) .f6 .f6 .f6 
w z 1 __ I 1 z 

f3 f3 f3 

Equations (7) allow us to calculate the new coordinates for any given vector 

(~) in terms of x, y, and z. 

Exercise 1. Classify the quadric surface: 

x2 + lOxz + y2 + 6yz + Z2 = 1 

(see Example 2, p. 197). 

Exercise 2. Find an equation in new coordinates of the form 

AIU 2 + A2V2 + A3W2-= 1 

for the quadric surface -4x2 + 2y2 + 3yz + 2Z2 = 1. 
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So far, we have been looking at surfaces with equation (1): 

ax2 + 2bxy + 2cxz + dy2 + 2eyz + fZ2 = 1. 
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If we replace the constant 1 by the constant 0 in this equation, we get the 
equation 

ax2 + 2bxy + 2cxz + dy2 + 2eyz + fZ2 = o. (8) 

(We exclude the case when all the coefficients equal zero.) What kind of 
locus is defined by this equation? 

EXAMPLE 1a. x2 + y2 + Z2 = O. This equation defines a single point, the 
origin. 

EXAMPLE 1 b. x2 + y2 - Z2 = O. This defines a (double) Gone with axis along 
the z-axis and vertex at the origin. 

EXAMPLE 1c. y2 + Z2 = O. This defines a straight line, the x-axis. 

EXAMPLE 1d. x2 = O. This defines a plane: x = O. 

Have we exhausted all the geometric possibilities by these examples? 
Let ~ denote the locus in 1R3 defined by equation (8). Using Theorem 3.12, 
we see that in suitable new coordinates u, v, w, equation (8) can be written 

t 1 u2 + t 2 v2 + t 3 w2 = 0, 

where t l' t2, t3 are fixed scalars. 

(9) 

Clearly then, only u = v = w = 0 satisfies equation (9), so ~ consists of 
one point, the origin. 

CASE 2. tl > 0, t2 > 0, t3 < O. 

We write t3 = -k with k > O. Then, (9) becomes 

tlu2 + t2v2 = kw2 or S1U2 + S2 V2 = w2, 

where SI' S2 are positive constants. It follows that, in this case, ~ is an 
elliptic cone, with the axis along the w-axis and the vertex at the origin. 
The slice of ~ by the plane: w = Wo where Wo is a constant =F 0, is the 
ellipse: SI u2 + S2 v2 = w5 in that plane (see Fig. 3.23). 

Exercise 3. Examining the remaining cases, where each t; is either positive, nega­
tive, or zero, shows that the only geometric possibilities for l:, other than those in 
Cases 1 and 2 are: 
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z 

--------------------~--------------------y 

Figure 3.23 

(a) a straight line through the origin; 
(b) a plane through the origin; and 
(c) a pair of planes, each of which passes through the origin. 

Exercise 4. Describe the locus with the equation, 

x 2 - 4y2 - 4yz - Z2 = O. 



CHAPTER 4.0 

Vector Geometry in n-Space, n ~ 4 

§l. Introduction 

In the preceding chapters, we have seen how the language and techniques 
of linear algebra can unify large parts of the geometry of vectors in 2 and 
3 dimensions. What begins as an alternative way of treating problems in 
analytic geometry becomes a powerful tool for investigating increasingly 
complicated phenomena, such as eigenvectors or quadratic forms, which 
would be difficult to approach otherwise. 

In the case of 4 dimensions and higher, linear algebra has to be used 
almost from the very beginning to define the concepts that correspond to 
geometric objects in 2 and 3 dimensions. We cannot visualize these higher­
dimensional phenomena directly, but we can use the algebraic intuitions 
developed in 2 and 3 dimensions to guide us in the study of mathematical 
ideas that are not easily accessible. Many of the algebraic notions that we 
have used in lower dimensions can be transferred almost without change 
to dimensions of 4 and higher, and we will, therefore, continue to use 
familiar geometric terms, such as "vector," "dot product," "linear indepen­
dence," and "eigenvector," when we study higher-dimensional geometry. 
For convenience, we will restrict most of our examples to 4 dimensions, 
but the same calculations work in n dimensions for n ~ 4. 

§2. The Algebra of Vectors 

A vector in 4-space is defined to be a 4-tuple of real numbers [Xl' X2' 

X3' X4], with Xi indicating the coordinate in the ith place. We denote this 
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vector by a single capital letter X, i.e., we write X = [Xl' X 2 , X3' X4]. The 
set of all vectors in 4-space is denoted by fR4. In a similar way, we denote 
by fRn the set of all vectors in n-space, where each vector X is an n-tuple of 
real numbers X = [Xl' X2' ... , Xn]. We will sometimes write a vector as a 
row of real numbers rather than a column, when no confusion can arise. 
It is not easy to "picture" the vector X as an arrow beginning at the 
origin and ending at a point in 4-space or n-space. Nonetheless, the 
power of linear algebra is that it enables us to manipulate vectors in 
any dimension by using the same rules for addition and scalar multi­
plication that we used in dimensions 2 and 3. In fRn, we add two vectors 
by adding their components, so if X = [Xl' X 2 , ... , xn] and V = [ul , U2 , 

... , un], then X + V = [Xl = Ul , X 2 + U2 , ... , Xn + Un]. We multiply a 
vector by a scalar r by multiplying each of the coordinates by r, so rX = 

[rxl' rx2 ,· •• , rxn ]. 

In 4-space, we set El = [1,0,0,0], E2 = [0, 1,0,0], E3 = [0,0, 1,0], 
E4 = [0,0,0, 1], and we call these the four basis vectors of 4-space. The 
first coordinate axis is then obtained by taking all multiples xlE l = 
[Xl' 0, 0, 0] of E l , and the ith coordinate axis is defined similarly for each 
i = 2, 3, 4. Any vector in 4-space may be uniquely expressed as a sum of 
vectors on the four coordinate axes X = Xl El + X2E2 + X3 E 3 + x 4 E 4 • 

Similarly, any vector in n-space can be expressed as a linear combination 
of the n basis vectors Ei, where Ei has a 1 in the ith position and ° 
elsewhere. Any vector X in fRn can then be uniquely written as X = 

xlE l + x 2 E 2 + ... + xnEn· 

In dimension 3, we described xlE l + x 2 E 2 + X3E3 as a diagonal seg­
ment in a rectangular prism with edges parallel to the coordinates axes. 
We drew a picture that was completely determined as soon as we chose a 
position for each of the basis vectors. We can do the same thing in the 
case of a vector in 4 dimensions, although it is not so immediately clear 
what we mean by the analog of a 4-dimensional rectangular parallelepiped 
or its n-dimensional counterpart. The basic insight that enables us to 
represent a vector on a 2-dimensional page is that we can determine the 
picture of any vector once we have the pictures of the basis vectors. Once 
we know the picture of E l' we can find the picture of Xl E 1 simply by 
stretching it by a factor of X 1. Once we know the pictures of Xl El and 
x 2 E 2 , we can obtain a picture of xlE l + x 2E 2 just by finding the diagonal 
of the parallelogram they determine in the plane. We can then get a 
picture of xlE l + x 2 E 2 + X3E3 just by taking the diagonal of the parallel­
ogram formed by the pictures of Xl El + x 2 E 2 and X3E3' and similarly for 
xlEl + x 2 E 2 + X3 E 3 + X4 E 4 (see Fig. 4.1). We may continue this process 
all the way to xlE l + X2 E 2 + ... + xnEn· 

The line through X parallel to the non-zero vector V is defined to be 
the set of all vectors of the form X + tV for all real numbers t. 

Exercise 1. Let X = [1,2,0, -IJ and U = [I, I, 1,2]. Find the intersection of the 
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Figure 4.1 

line through X parallel to V and the set of all vectors that have fourth coordi­
nate O. 

Exercise 2. Show that the line of Exercise 1 is the same as the line through 
Y = [3,4,2,3] parallel to V = [-2, -2, -2, -4]. (Show that every vector of the 
form X + tV can be written in the form Y + sV for some choice of s, and 
conversely, that every vector of the form Y + sV can be written in the form 
X + tV for some t.) 

Exercise 3. Show that the line of Exercise 1 meets the line through Z = [0, 1, 2, 0] 
parallel to W = [ -1, -1, -4, - 5] at exactly one point. (Find t and s such that 
X + tV = Z + sW, and explain why there is only one such pair of scalars.) 

Exercise 4. In IRs, find the coordinates of the point on the line through X = 
[1,2,3,4,5] parallel to V = [5,4,3,2, 1] that has its last coordinate equal to o. 

As in the case of 1R2 and 1R3, vectors in 1R4 and IR" satisfy the following 
algebraic properties: For all vectors X, Y, U and all scalars rand s, we 
have 

(a) (X + Y) + U = X + (Y + U). 
(b) X + U = U + X. 
(c) There is a vector 0 with X + 0 = X for all X. 
(d) For each X, there is a vector - X with X + ( - X) = o. 
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(e) (r + s)X = rX + sX. 
(f) r(s(X)) = (rs)X. 
(g) r(X + V) = rX + ru' 
(h) IX = X for all X. 

Linear Algebra Through Geometry 

As in previous chapters, these properties may be verified componentwise. 
We may use the properties of addition and scalar multiplication to 

define the notion of the centroid of a collection of vectors in 1R4 or IR". As 
before, we define the midpoint of a pair of vectors X and V to be 
C(X, V) = (X + V)/2 and the centroid of a triplet of vectors X, Y, V to be 
C(X, Y, V) = (X + Y + V)/3. Similarly, for any r-tuple of vectors Xl' X2 , 

... , Xr in IR", we define the centroid to be C(Xl' X2 , ... , Xr) = (Xl + X2 + 

... + Xr)/r. 

Recall that, in elementary geometry, the centroid of a triangle can be 
found by going two-thirds of the way from a vertex to the midpoint of the 
opposite side. In vector form, this is equivalent to the statement that 
C(X, Y, V) = mX + (~)C(Y + V). A simple substitution shows that this is 
indeed correct. 

Exercise 5. Show that the centroid of the tetrahedron determined by the four 
points X, Y, U, V is three-fourths of the way from the vector V to the centroid of 
X, Y, and U. 

Exercise 6. Show that the centroid in Exercise 5 is the midpoint of the centroids 
qx, Y) and qu, V). 

Exercise 7. Find a number t such that the centroid of E I , E2 , E3, E4 , and 
t(EI + E2 + E3 + E4 ) is O. 

Exercise 8. Show that the centroid of X, Y, Z, U, V is three-fifths of the way from 
the midpoint of U, V to the centroid of X, Y, Z. 

§3. Dot Product, Length, and Angle in 1R4 and IRn 

In 4-s ace, we rna define the length of the vector X = [Xl' X2' X3' X4] to 
be (xi + X~ + X~ + x~). In general, in IR", we may define the length of 
any vector to be the square root of the sum of the squares of its 
coordinates. We denote this length by lXI, a real number, which is never 
negative, and which equals 0 if, and only if, X = O. Moreover IrXI = IrllXI 
for any scalar r and any vector X. If X "# 0, then we may write X = lXIV, 
where V:::;: X/IXI is a vector with unit length. The vectors of length 1 in 
1R4 determine the unit sphere in 1R4, and more generally, the vectors of 
length I in IR" determine the unit sphere in IR". 
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Exercise 9. Show that for any choice of angles a and b, the vector U = 
(1/j2) [cos(a), sin(a), cos (b), sin (b)] is a unit vector in 1R4. 

Exercise 10. Show that for any choice of angles a, b, and e, the vector U = 
[cos(a) cos (c), sin (a) cos(e), cos (b) sin(e), sin(b) sinCe)] is a unit vector in 1R4. 

Exercise 11. Show that for any choice of angles a, b, and e, the vector U = 
[cos(a) cos(b) cos (c), cos (a) cos (b) sin (c), cos(a) sin(b), sin(a)] is a unit vector in 1R4. 

Exercise 12. Find the length of the vector cos(a)E, + sin(a)E2 + 2 cos(b)E3 + 
2 sin(b)E4 + 3Es in IRs and express this vector as a scalar multiple of a unit 
vector. 

Definition. Five points in IRn are the vertices of a regular 4-simplex if the 
distance between any two points is the same. 

Exercise 13. Find a number t such that the points E" E2, E3, E4, and t(E, + 
E2 + E3 + E4) form the vertices of a regular 4-simplex. 

Exercise 14. Show that the endpoints of the five basis vectors in IRs form the 
vertices of a regular 4-simplex. 

Exercise 15. Show that for any s, the vector SE4 has the same distance from the 
four points [1, 1, 1,0], [1, -1, -1,0], [-1, 1, -1,0], and [-1, -1, 1,0]. For 
which s will these five points form the vertices of a regular 4-simplex? 

Exercise 16. Show that the distance between any two of the six vectors E, + E2, 
E, + E3, EI + E4, E2 + E3 , E2 + E4, E3 + E4 is either 2 or j2. 

As in dimensions 2 and 3, we may define a notion of dot product in 1R4 
or IRn, which enables us to develop many important geometric ideas in 
linear algebra. In 1R4, we define X' V = [Xl' X2' X 3 , X4]' [U l , U2 , U3 , U4 ] = 
XIU I + X 2 U2 + X3U3 + X 4 U4 and, more generally, in IRn, we define X'V = 

[Xl' X 2 , •.• , Xn]· [U l , U2 , ... , Un] = Xl U I + X 2 U 2 + ... + XnU n. As before, 
IXI = JX. X, and IXI = 0 if and only if X = O. Moreover, IXI 2 + IVI2 

= IX + VI 2 if, and only if, X' V = O. Thus, the vectors X and V form 
the legs of a right triangle if and only if X . V = 0, so the condition that 
X and V be perpendicular or orthogonal is that their dot product is 
zero. 

In 1R3 , the set of vectors perpendicular to a fixed non-zero vector form a 
plane. In 1R4 or IRn, the vectors orthogonal to a fixed non-zero vector form 
a hyperplane. For example, in 1R4 , the set of vectors orthogonal to E4 is 
the hyperplane of all vectors with fourth coordinate zero. 

Exercise 17. Describe the hyperplane in 1R4 consisting of all vectors that are 
orthogonal to the vector E, + E2 - E3 - E4. 

Using componentwise arguments, we may establish the following proper­
ties of the dot product for any vectors X, D, V and any scalar r: 
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Figure 4.2 

V·X=X·V, 
(rX)· V = r(X' V), 

X . (V + V) = X . V + X . V. 

As in dimensions 2 and 3, we wish to define the angle between two 
vectors in such a way that the law of cosines will hold, i.e., for any two 
nonzero vectors X and V (see Fig. 4.2), we wish to have 

so 

IX - VI2 = IXI2 + IVI2 - 21XIIVI cosO. 

But by the properties of dot product, we have 

IX - VI2 = (X - V) . (X - V) = X . X - 2X . V + V . V, 

IX - VI2 = IXI2 + IVI 2 - 2X . V. 

We would then like to define cosO by the condition 

IXIIVlcosO = X· V and 0 ~ 0 ~ 'fT, 

but to do this, we must have IcosOI ~ 1, i.e., cos2(J ~ 1. Thus we must show 
that for any nonzero X and V, we have 

( XV )2 
IXI: lUI ~ 1. 

(This inequality is known as the Cauchy-Schwarz Inequality.) 
One case is easy: If V = tX for some t, then 

X . V X . tX tX . X t 
IXIIVI = IXII tXI = I tllXI2 = Ttf ' 

and -1 ~ I/Itl ~ 1, since t/ltl = 1 if I > 0 and t/ltl = -I if t < o. 
If V - IX =1= 0 for all t, then we can use the quadratic formula to provide 

the proof. We have 

o < IV - IXI2 = (V - IX) . (V - tX) = (V . V) - 2(V . X)t + (X . X)t2 

for all I. But if (V, xi - (V, V)(X' X) were positive or zero, we would 
have solutions t of the equation 

0= (V· V) - 2(V· X)t + (X, X)t2, 
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given by 

- ( - 2U . X) ± ~4(U . X)2 - 4(U . U)(X . X) 

t = 2(X. X) 

Since we cannot have any such solutions, we must conclude that 

(U' X)2«U' U)(X· X) 

i.e., 

(U. X)2 
..:..--:---:- < 1. 
IUI21XI2 

We then define (J by the equation 

X·U 
cos (J = IXIIUI for 0.;;; (J .;;; 'fT. 
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If U = tX for t > 0, then cos(J = 1 and (J = 0. If U = tX for t < 0, then 
cos(J = -1 and (J = 'fT. If X· U = 0, then (J = 'fT /2 and we say that the 
vectors X and U are orthogonal. 

Exercise 18. Show that for any 8, the vectors cos8EI - sin8EJ and sin8EI + 
cos 8 E3 are orthogonal in 1R4. 

Exercise 19. Find a real number t such that [ ~ ] is orthogonal to [ I ~t t ]. 
- I 2t - I 

We say that a collection of vectors is orthonormal if each vector has unit 
length and if any two distinct vectors in the set are orthogonal. For 
example, the basis vectors {EI' E2, E J , E4 } form an orthonormal set. 

Exercise 20. Show that for any angle 8, the vectors {cos8EI + sin8E4 ,E2,E3, 
- sin 8EI + cos 8E4 ,} form an orthonormal set. 

-.. .. 21. Show that fudou .. "tOB [H [?l [~~ l [~d are mutually 

orthogonal and all have the same length. 

Exercise 22. Show that for all angles 8 and q" the vectors 

{ (cos 8EI + sin 8E2)cos q, + sin q,E3 , 

- (cos 8EI + sin 8E2)sinq, + cos q,E3, 

- sin 8EI + cos 8E2, E4 ) 

form an orthonormal set. 

Exercise 23. Find the angle between the vectors E) + E2 and E) + E2 + E3 + E4 • 
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Exercise 24. Find the angle between the vectors E3 - HEI + E2) and E4 - HEI 

+ E2)· 

-- 25. Find Ih, an,l< b,lw"n th, v"lo" [11 and [J ,1 Whal '" Ih' 

p=ib', ,o.in" of ang!" b<lw"n Ih, ."1<,, [11 and Ih, oth" V""to" whi<h ha., 

each coordinate I or - I? 

Exercise 26. Show that if U, V, and Ware distinct vectors with each coordinate I 
or - I and if V and W each differ from U by exactly one coordinate, then V - U 
and W - U are orthogonal and they have the same length. 

XI 

The collection of vectors X = X 2 with - 1 .;;; Xi .;;; 1 for i = 1,2,3,4 is 
X3 

X 4 

called the 4-cube centered at the origin. 
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Transformations of n-Space, n ~ 4 

By a transformation of 4-space, we mean a rule T which assigns to each 
vector X of 1R4 some vector T(X) of 1R4. The vector T(X) is called the image 
of X under T, and the collection of all images of vectors in 1R4 under the 
transformation T is called the range of T. We continue to denote transfor­
mations by capital letters such as P, Q, R, S, T. 

Examples of transformations are: 

(I) Projection to the line along U =1= 0 defined by 

(X. U) P(X) = U. U U. 

(2) Reflection through the line along U =1= 0 defined by 

SeX) = 2P(X) - X. 

(3) Multiplication by a scalar t defined by 

D/(X) = tX. 

(4) Projection to the hyperplane perpendicular to U =1= 0 defined by 

Q(X) = X - P(X). 
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XI + X 2 + x) + X 4 

_ 1 X I + X 2 + x) + X 4 

-"4 XI + X 2 + x) + X 4 

X I + X 2 + X) + X 4 

- XI + X 2 + x) + X 4 

SeX) = 2P(X) - X = 1 XI - X 2 + x) + x 4 

2 X I + x 2 - X) + x4 

1 
Q(X) ="4 

X I + X2 + x) - x 4 

3x I - x 2 - x) - x 4 

- XI + 3x2 - x) - x4 

- XI - x 2 + 3x) - x4 

- XI - x 2 - x) + 3x4 

Exercise 1. In each of the following problems, let P denote projection to the line 
along U. Find a formula for the coordinates of the image P(X) in terms of the 
coordinates of X. 
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Exercise 2. For each of the vectors U in Exercise I, find a formula for the image of 
the reflection S(X) through the line along U. 

Exercise 3. For each of the vectors U in Exercise I, find a formula for Q(X), where 
Q is the projection to the hyperplane orthogonal to U. 

Using the description of a transformation in terms of its coordinates, we 
can define further transformations, such as: 

(5) Rotation in the x.X2 plane by angle () defined by 

"""""" 4. In te,m. of the "",,,dinate of X ~ [~il "Ioulate the image, Rj'(X1 

R.:}4(X), R !?,,/iX). 

Similarly, we have the images of R/j in the X;Xj plane by setting x" = Xk 
for all k =1= i, j and by defining 

x; = cos (}x; - sin (}xj , 

x; = sin (}x; + cos (}xj . 

Exercise 5. Calculate the images Rj4(X), R,j4(RJ2(X», RJ2(R,j4(X», Ri3(RJ2(X», 

Ri'U<i'(X», where X - [~i J 

Just as in the case of objects in 3 dimensions, we may picture objects in 
4-space by projecting them down to a 2-dimensional plane. The easiest such 
projection is simply the projection to the first two coordinates in 1R4, Le., 

We call this the projection to the 1-2-coordinate plane. Even though this 
transformation takes a vector in 1R4 and sends it to a vector in 1R2, it 
possesses the properties of a linear transformation since T(X + tV) = 
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T(X) + tT(U) for any X, U in 1R4 and any real number t. In particular, the 
images of a line is another line if T(U) =1= 0 and the image is a point if 
T(U) = O. This fact makes it easy to draw 2-dimensional pictures of objects 
in 4-space which are composed of segments-we simply find the images of 
the vertices of the object and connect the image points by a segment in 1R2 
if the original vertices are connected by a segment in 1R4. 

ExAMP~ 2. In R'. the poin~ V -lH V = [n and W = m detennme an 

equilateral triangle. The image points are T(U) = ( ~), T(V) = (~), 

T(W) = (~) (see Fig. 4.3). 

Note that the image itself is not equilateral. 

ExAMPLE 3. The tetrahedron m nt' detennmed by the vertices V, = [H 

V, - [tl V, = III V, = [l] MS the. s_ i~~ as in Example 2 mncc 

T(U\) = T(U4) = U)· 

~-----, T(U) 

T(V) 

Figure 4.3 
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EXAMPLE 4. The tetrahedron in 1R4 determined by the vertices VI = ~], 
- I 

T(V.) 

_1 
2 

-t 
7 
7 

has the image given by Figure 4.4. 

T(V.) 

Figure 4.4 

EXAMPLE S. Consider the 4-cube centered at the origin with vertices given 
by the vectors with all coordinates either I or - 1. The projection T of this 

4-cube to the plane has only four "distinct vertices (:), (.: I)' (11), 
( =-!), even though the 4-cube has 16 vertices. For example, the four 

V~~S [1], [J J [J J [~ I] are all =tto m und~ T. 

In order to get more useful pictures of an object like the 4-cube, we first 
rotate the object before projecting to the 1-2-coordinate plane. For exam-
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pIe, if we rotate the 4-cube () degrees in the 1-3-plane, we get 

XI COS(}XI - sin(}x3 

Rol3 x2 X2 

x3. sin(}x l + cos(}x3 
x4 X4 

so 

XI 

TRol3 ;: = (COS(}XI;:sin(}X3). 

x4 

The picture opens up a certain amount, but we still see only eight distinct 
vertex images. 

If we first rotate in the 1-3-plane by () degrees and then in the 2-4-plane 
by q, degrees we, get 

XI cos(}x l - sin(}x3 

R24R 13 X2 COSq,X2 - sinq,x4 
<p 0 

X3 sin (}x I + cos (}X3 

X4 sin q,x2 + cos q,x4 

so 

Thus 

TR24RI3[~ 1] = [ $/2 + 1/2 ], 
45 30 - 1 _ Ii /2 + Ii /2 

-1 

while 

TR24RI3[~I]=[ $/2+1/2] 
30 30 - 1 _ $ /2 + 1/2 

. - 1 
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We get 16 different images for the 16 vertices of the 4-cube, but again it is 
difficult to interpret the image of the whole 4-cube. 

If instead we first rotate in the 1-3-plane, then the 2-4-plane, then the 
1-4-plane, we get a general position. 

TR 14R24R \3 = . . 
~~l (cosa(COSOX 1 - sinOx3) - sina(sinq,x2 + COSq,X4») 

'" </> 9 X3 COSq,X2 - smq,x4 
X 4 

Then 

= 

Finally, if we rotate by p degrees in the 2-3-plane, we have 

(
COS a cos Ox I - sin a sin q,x2 - cos a sin OX3 - sin a cos q,x4 ) 

= - sin psinq,xI + cos p cos q,x2 - sin {3COSOX3 - cos {3sinq,x4 . 

In particular, 

Now we have a picture in "general position" where no two images of 
coordinate axes are linearly dependent. 

These are precisely the sorts of instructions which are used in producing 
computer graphics images (see Fig. 4.5), for example, in the film The 
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9 = 30, <I> = 0, IX = 0, fl = 0 9 = 30, <I> = 30, IX = 0, fl = 0 

9 = 30, <I> = 30, IX = 30, fl = 0 9 = 30, <I> = 30, IX = 30, fl = \0 

Figure 4.5 

Hypercube: Projections and Slicing by Thomas Banchoff and Charles 
Strauss. We include several different pictures of that object corresponding 
to other values of 0, </>, lX, and /3. 



CHAPTER 4.2 

Linear Transformations and Matrices 

In Chapter 4.1 we examined a number of transformations T of 4-space all 
of which have the property that the coordinates of T(X) are given as linear 
functions of the coordinates of X. In each case we have formulas of the sort 

Any transformation which can be written in this form is called a linear 
transformation of 4-space. 

all a l2 a\3 

The symbol a21 a22 a23 
a31 a32 a33 

is called the matrix of the transforma-

a41 a42 a43 a44 
tion T and is denoted m(T). We abbreviate m(T) by «aij»' where aij stands 
for the entry in the ith row and the jth column. 

We can now list the matrices of the linear transformations in the 

examples of Chapte, 4.1 (with U = [! j): 
1 1 1 I 
4 4 4 4" 
1 1 1 1 

m(P) = 4 4 4 4 (I) 
1 1 I 1 
4 4 4" 4 

1 1 1 1 
4 4 4 4 
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-1 1 1 1 
2 2 2 2 

I _1 1 1 
m(S) = "2 2 2 2 

(2) I 1 _1 1 
"2 2 2 2 

1 I 1 I 
2 "2 2 "2 

m(D,) ~ [~ 
0 0 0 
t 0 0 

(3) 0 t o ' 
0 0 t 

1 _1 _1 _1 
4 4 4 4 

-1 1 -1 _1 
m(Q)= 4 4 4 4 (4) _1 -1 1 -1 

4 4 4 4 
_1 _1 _1 1 

4 4 4 4 

cosO - sinO 0 0 

m(ROI2) = sinO cosO 0 0 (5) 
0 0 1 0 
0 0 0 1 

As in dimensions 2 and 3, if T is the linear transformation with matrix 
meT) = «aij»' we then write 

XI 

x 2 
« aij »( X) = « aij » X3 

allx l + a l2x 2 + a13x3 + a14x4 
a21 x I + a22x2 + a23x3 + a24x4 
a31 x I + an x2 + a33x3 + a34x4 
a41 x I + a42x2 + a43x3 + a44x4 

YI 
d Y2 an we say that the matrix «aij» acts on the vector X to yield Y = . We 

Y3 
Y4 

may then write the equations for the coordinates of Y as 

for i = 1,2,3,4. 

As in dimensions 2 and 3, we now prove two crucial properties of linear 
transformations, which show how a matrix acts on sums and scalar prod-

XI U I 

ucts. If X = x2 and U = U2 , and if Y = «aii»(X + U), then 
X3 u3 ' 

Yi = ail(x i + u l ) + adx2 + U2) + ai3(x3 + U3) + ai4(x4 + u4) 

= (ailx l + ai2x2 + ai3x3 + ai4x4) + (ailu l + ai2u2 + ai3u3 + ai4u4)' 

Therefore, «aij»(X + U) = «aij»X + «aij»U, It follows that T(X + U) 
= T(X) + T(U). 
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Similarly, we may show that T(rX) = rT(X) for any scalar r. 
Conversely, if T is a transformation such that T(X + U) = T(X) + T(U) 

and T(rX) = rT(X) for all vectors X, U and scalars r, then 

T[:: = T ~Il + ~2] + ~ 1 + ~ 1 
X3 0 0 X3 0 
X 4 0 0 0 X 4 

= T(xIEI + x 2E2 + X3E3 + x4E4 ) 

= XI T(EI) + x2T(E2) + X3 T(E3) + x4T(E4)' 

a lj XI 
a2 · X 2 

We define aij by setting T(E) = a~ . Then T X3 

XI 
X 2 

= «a» . Hence, /) X3 
a4j x4 x4 

T is the linear transformation with matrix «aij»' 
In summary, we have: 

Theorem 4.1. A transformation T of 4-space is a linear transformation if and 
only if T(X + U) = T(X) + T(U) and T(rX) = rT(X) for any vectors X and 
U and scalars r. 

In much the same way as in dimensions 2 and 3, we may define the 
notions of products of transformations and of their corresponding ma­
trices, of inverses, determinants, and eigenvalues. These procedures lead to 
systems of equations in four and more variables which we will take up in 
the next chapter. We do mention two facts which are important differ­
ences between dimension 4 and dimension 3 to help the student in 
pursuing the subject of linear algebra beyond the material in this book. 

First of all, although every linear transformation in jR3 had at least one 
eigenvalue, this property no longer holds in jR4 (as indeed it did not in jR2). 

For example, if we consider the double rotation RrR~2, we have 

RrR~2 X2 = sinOx l + C~SOX2 , [
X11 [COSOXI - SinOX21 

X3 COS<j>X3 - sm<j>x4 
x4 sin<j>x3 + COS<j>x4 

and if RrR~2(X) = AX for some A =1= 0, we have, first of all, 

cosOx l - sinOx2 = Axl ' 

sinOx l + cosOx2 = Ax2 ; 

so unless XI and X2 = 0, 

(cosO - A)2+ sin20 = 0, 
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and, therefore, 

1 + A2 - 2ACOSO = O. 

The only solutions then are A = (2cosO ± ,j4cos2(J - 4 )/2. But this has 
solutions only if cos20 = 1,0 = 0, 'Tr. Similarly, the last two equations express 
the condition that 

coscpx) - sincpx4 = Ax), 

sin cpx) + cos cpx4 = Ax4 , 
which can only occur if cp = 0 or 'Tr or if both x) and X 4 = O. Therefore, in 
the case where neither 0 nor cp is 0 or 'Tr, the transformation RrR~2 will 
have no (real) eigenvalues or eigenvectors. 

The definition of the determinant of a matrix in 1Jl4 is analogous to the 
definition in 1Jl2 or 1Jl3. We recall that we can express the 3 x 3 determi­
nant in terms of 2 x 2 determinants as follows. 

In 1R4, we define a 4 x 4 determinant in terms of 3 X 3 determinants: 

a 1 b1 

a2 b2 

a) b) 

a 4 b4 

For example, 

c1 d1 
b2C2d2 b1c1d1 b1c1d1 

C2 d2 = a 1 b)c)d) -a2 b)c)d) +a) b2C2d2 -a4 
C3 d3 b4c4d4 b4c4d4 b4c4d4 
C4 d4 

cosO - A - sinO 0 0 
sinO cosO - A 0 0 

0 0 coscp - A - sincp 

0 0 sincp coscp - A 

cosO - A 0 0 
= (cosO - A) 0 coscp - A - sincp 

0 sincp coscp - A 

-sinO 0 0 
- sinO 0 coscp - A - sincp 

o sincp coscp - A 

= (cosO - A)2 + sin2(J)(coscp - A)2 + sin2cp) 

= (A2 - 2ACOSO + 1)(A2 - 2ACOSCP + 1). 

b1c1d1 
b2c2d2 

b)c)d) 

The only cases in which this determinant is zero occur when either 0 or cp is 

o or 'Tr. 
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The determinant of an n x n matrix is defined inductively. If we assume 
that the determinant of an (n - 1) x (n - 1) matrix has already been 
defined, then we may obtain the determinant of an n x n matrix by using 
the following formula: 

all a12 a 13 ah 

a 2l a 22 a 23 a2n 
an a 23 a 2n 

a 3l a 32 a 33 a ln = all 
a 32 a 33 a3n 

a nl a n2 a n3 ann 
a n2 a n3 ann 

a 12 a l3 a h a 12 a 13 a ln 

- a 2l 
a 22 a 2 3 a2n 

+ a3l 
an a 23 a 2n 

a n2 a n3 ann a n2 a n3 ann 

a 12 a l3 a ln 

+ ... + (_1)n-l 
a 22 a 23 a2n 

a n- 12 a n- 13 a n- ln 

Let A be a linear transformation of IRn with matrix m with entries au. It 
can be shown that A has an inverse if and only if the determinant of 
m =f. O. 



CHAPTER 4.3 

Homogeneous Systems of Equations 
in n-Space 

In Chapters 2.4 and 3.4, we studied systems of linear equations in 2 and 3 
unknowns. In this chapter, we will apply the techniques of linear algebra 
to systems of linear equations in n unknowns where n ~ 4. 

EXAMPLE 1. Let us look at the system 

{
XI + 2X2 + 3x) - X4 = 0, 

X 2 + X) + X4 = 0, 

in four unknowns. Bya solution of (I) we mean a vector X in 1R4, 

which satisfies the two equations in system (1). Thus 

are two solutions of (I). 
Let us find all solutions of (1). Assume 

(1) 
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is a solution of (1). Subtracting twice the bottom equation from the top, we 
get 

or 

So we have 

{
Xl +X3-3X4 =0, 

x 2 + X3 + x4 = 0, 

which we rewrite in the form: 

{ Xl = - X3 + 3x4, 
X2 = -X3 - X4· 

(2) 

(3) 

We just saw that every solution of the system (1) satisfies the system (3). 
Conversely, retracing our steps, we see that if X is a solution of (3), then X 
is also a solution of (1). But now (3) can be solved directly. We give 
arbitrary values to X3 and x4 and then use (3) to calculate Xl and X2. For 
instance, set X3 = - 10, X4 = 3. Then, by (3), 

x l =IO+3·3=19, 

and 

X 2 = 10 - 3 = 7. 

Using these values for Xi' i = 1, 2, 3, 4, we get 

X = [ 1; ]. 
-10 

3 

One can directly check that X is a solution of (1). 
More generally, fix two numbers u, v. Set X3 = U, X4 = v and define Xl 

and x 2 by (3). Then 

Xl = -u + 3v, 

x2 = -u - v. 

Set 

Xl -u + 3v -1 3 

X= 
x2 -u-v - 1 - 1 
x3 U 

=u I +v 0 (4) 

x4 v 0 1 
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Letting u, v take on all possible scalar values, formula (4) then delivers all 
solutions of (1). 

Next, we shall study an arbitrary system of k equations in n unknowns 
having the following form: 

allx 1 + a12x2 + 
a21 x 1 + a22x2 + 

+ a1nxn = 0, 

+ a2n xn = 0, 

(H) is called a homogeneous system of linear equations. 

(H) 

Here aij' I ,;;; i ,;;; k, I ,;;; j ,;;; n, are certain given scalars called the coeffi­
cients of the system (H) and x I' ... , xn are the unknowns. A solution of 
(H) is an n-tuple of numbers 

X= 

such that each of the k equations in (H) is satisfied by these n numbers. 
We recall the discussion in Chapter 4.0, §2: We define an n-tuple X 

as a vector in n-space, and we denote the totality of all such vectors by IRn. 
Addition of vectors in IRn and multiplication of a vector by a scalar is defined 
by analogy with the definitions given for the case n = 4, and the same basic 
algebraic properties hold which we noted in that case. Furthermore, the dot 
product of two vectors in IRn is defined as in Chapter 4.0, §3, by 

X·U=X 1U1+x2u2+ ... +XnUn' 

where 

X= U= 

Using dot-product notation, the system (H) can be written concisely as 

A1·X=0, 

A2 • X = 0, 

Ak • X = 0, 

(H) 
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where X is the unknown vector [:] and 

, etc. 

Using the dot product, we may give a geometric interpretation of homoge­
neous equations that allows us to solve a number of geometric problems 
in n-space analogous to those we can solve in spaces of 2 or 3 dimensions. 
The statement that A· X = 0 can be interpreted as saying that X is in the 
hyperplane orthogonal to A. The statement that Ai . X = 0 and A2 . X = 0 
then means that X is in the intersection of two hyperplanes. This intersec­
tion might be a hyperplane itself, in case Ai and A2 are linearly depen­
dent, but if Ai and A2 are linearly independent, any vector orthogonal to 
both of them will be orthogonal to any linear combination of them. Thus, 
the solutions of this system of two linear equations can be interpreted as 
the collection of vectors orthogonal to the plane determined by A 1 and 
A2 • In the case n = 4, the collection of vectors orthogonal to the plane 
containing Ai and A2 is itself a plane, and when we solve the system of 
linear equations, we are finding a basis for this plane. If we have a system 
of three homogeneous linear equations in 4-space, and if the vectors Ai' 
A2 , A3 are linearly independent, then they span a hyperplane, and the 
solution of the system consists of all vectors in the line orthogonal to this 
hyperplane. Lines, planes, and hyperplanes through the origin (as well as 
1R4 itself and the set consisting of the zero vector) are the only subsets of 
4-dimensional space that are closed under addition and scalar multiplica­
tion, and any of these sets can be the set of solutions of a system of 
homogeneous equations. In Chapter 5, we will generalize this notion to 
higher dimensions by introducing the concept of a subspace of a vector 
space. 

Next, we will describe a procedure for solving any system of k homoge­
neous equations in n unknowns. This procedure is known as Gaussian 
elimination and it is the basis for most algorithms used by computers in 
solving such systems. 

To find all the solutions X of a given system (H), consider a second 
system 

{
a;IXI + a;2x2 + 

ak1x1 + ak2x2 + 
(H') 

We say that the systems (H) and (H') are equivalent if every solution of (H) 
is a solution of (H'), and conversely. 
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To solve (H) it will be enough if we can find a system (H') which i:. 
equivalent to (H) and which is easy to solve. Note that we did just that in 
Example 1 when we found the system (2) which was equivalent to (1). 

In the next example, k = 3 and n = 4. 

EXAMPLE 2. To solve 

{

X I - 2X2 + 3x3 = 0, 

x I + X 2 +X4=0, 

4X3 - X4 = 0, 

(5) 

subtract the top line from the middle line and leave the other lines alone. 
We get the new system 

(5a) is equivalent to (5). 

{

XI - 2x2 + 3x3 = 0, 

3x2 - 3X3 + X4 = 0, 

4X3 - X 4 = 0. 

Next, add ~ of the middle line in (5a) to the top line. We get 

{

XI + X3 + ~X4 = 0, 

3x2 - 3X3 + X4 = 0, 

4X3 - X4 = 0. 

(5a) 

(5b) 

(5b) is equivalent to (5a), and so it follows that (5b) is equivalent to (5). 
Next we add - ~ times the bottom line of (5b) to the top line, getting 

{

XI +(~+~)X4=0, 
3X2 - 3X3 + X4 = 0, 

4X3- X4=0. 

(5c) 

Finally, add i of the bottom line of (5c) to the middle line, getting 

{

XI +ttx4 = 0, 

3X2 + ~X4 = 0, 

4X3 - X4 = 0. 

(5d) 

As before, (5c) and (5d) are equivalent to (5). But (5d) can be solved at 
once. Give an arbitrary value to X4 and then use (5d) to calculate XI' X2' X3' 

We find 

X 2 = ( - -b )X4 ' 

X3 = ~X4' 
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Hence, we get, as a solution of (5d): 

XI - H-X4 
_11 

12 

X 2 - -rr X 4 -~ 
X= = X 4 

12 

X) tX4 1 
4 

(6) 

X 4 x 4 1 

For different choices of X 4 , (6) gives all solutions of (5d) and, therefore, 
all solutions of (5). 

The method just used in Example 2 can be applied to any system of the 
form (H). By a succession of steps in which a scalar times one line of the 
system is added to some other line, while the remaining lines are left 
unchanged, and, possibly, by relabeling the unknowns Xi' we finally obtain 
a system (H') of the following form: 

+blIXI+ I + b 12XI + 2 + 

+ b 21 XI + I + b 22X I+2 + 

+ bl,n_IXn = 0, 

+ b2,n-IXn = 0, 

XI + bllxl + I + b l2Xl+ 2 + ... + bl,n_IXn = 0, 

(H') 

where I is some integer, depending on the system (H), with I « I « n, and 
bi) are certain constants, such that the original system (H) and this system 
(H') are equivalent. To find all solutions of (H'), and, therefore, of (H), we 
need only fix numbers U I 'U2' ••• , un_I' set X I + I = Up .•• 'Xn = un-I' and 
then find X I 'X2' ••. , XI from (H'). We get 

XI = - bllU I - b l2U2 - ... - b U I,n-I n-I' 

XI = - bilu l - b l2U2 - ••• - b U I,n-I n -I' 

The solution X of (H) is then given by 

XI - bllu l - ••• - bl,n_1un _ 1 

x 2 - b 21 u I - ••• - b 2,n-IUn _ 1 

- b/lu l - - bl,n_IUn_1 

ul 

u2 

In other words, 
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-b/2 
+ U2 0 +. . . + un _/ 

1 

o o 

-b/,n_/ 

o 
o 

(7) 

Letting u l , ... , u/ take on all possible scalar values, (7) gives us all solutions 
of (H), and each choice of u I' ... , u/ provides a solution of (H). 

ExAMPLE 3. Find a nonzero vector [;: 1 in R' which i, orthogonal to each 

of the vectorn m and [l] 
The condition on XI' X 2 , X3 is 

{
2X I +3X2 =0, 

X I + x 2 + x3 = O. 
(8) 

So we must solve the system (8), of two equations in three unknowns. 
Subtracting ! the top line from the bottom line, we get the equivalent 
system 

{ 
2x 1+ 3x2 = 0, 

- !x2 + X3= O. 
(8a) 

Adding 6 times the bottom line to the top one, we get the equivalent system 

{ 
2x I + + 6X3 = 0, 

- !X2 + X3 = O. 

(8b) can now be solved to give 
XI = - 3x3' 

x 2 = 2X3' 

SO the ,olution X - [:: 1 of (8) is given by 

x- [~~:} x,[ ~31 

(8b) 

Here X3 is an arbitrary scalar. In particular, taking X3 = - 1, we get: The 

vector [; ~ 1 is orthogonal to m and to [11 
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Note: We could have solved this problem by using the cross product. 

Exercise 1. Find all solutions of the system in four unknowns: 

{

XI + x4 = 0, 
XI - X4 = 0, 

XI + x2 + x3 + X4 = O. 

Exercise 2. Find all solutions of the system: 

{
XI + 2x4 = 0, 

XI + X2 + X3 + X4 = O. 

Exercise 3. Find all solutions of the system in XI' Xl' X3, X4: 

{

XI + 2Xl = 0, 

Xl + X3 + X4 = 0, 

XI + Xl - X3 = O. 
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(9) 

(10) 

(II) 

Exercise 4. Find all solutions of the system consisting of one equation in five 
variables: 

Exercise S. Find all vectors in 1R4 which are orthogonal in 1R4: 

Exerehe 6. Find all v<clo~ in R' whioh." orthogonal 10 th, v"lo~, [H [H 



CHAPTER 4.4 

Inhomogeneous Systems of Equations 
in n-Space 

§l. Solutions of Systems of Equations 

The procedures that we used to solve homogeneous systems of linear 
equations can be modified to solve systems of equations that are not 
homogeneous. Once we have anyone solution to an inhomogeneous 
system of linear equations, we will be able to obtain all other solutions 
just by adding the solutions to the associated homogeneous system of 
linear equations. In the case of 4-dimensional space, the geometric inter­
pretation of the solution set of a homogeneous system in terms of lines, 
plane, and hyperplanes through the origin leads to a corresponding de­
scription of the solution sets of inhomogeneous systems as lines, planes, 
and hyperplanes not passing through the origin. 

Let aij' 1 ::::;; i ::::;; k, 1 ::::;; j ::::;; n be a set of constants, and fix k constants 
U1, U2' ... , Uk' The system 

{

a\\x\ + a\2x2 + ... + a\nXn : U\' 

a2\x\ + a22x 2 + ... + a 2n Xn - U2' 

ak\x\ + ak2x 2 + ... + aknxn = Uk 

(I) 

is called an inhomogeneous system of linear equations. If all the u; = 0, (I) 
turns into the homogeneous system (H) which we studied in Chapter 4.3. 
We set 

U= X= 
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X is a solution of (I) if the equations in (I) are satisfied. How can we solve 
such an inhomogeneous system? For n = k = 2 and for n = k = 3, we have 
studied such systems in earlier chapters. In the general case of arbitrary k 
and n, we can proceed as in our solution of homogeneous systems in 
Chapter 4.3 to find a succession of systems that are equivalent to (I), until 
we reach a system (I') of the following form, where we may have relabeled 

the Xi: 

XI + bllx,+ I + b 12xl+2 + + bl,n-,xn = VI' 

X 2 + b2I x,+ I + b22x, + 2 + + b2,n-,xn = V2' 
(I') 

x, + b/lx,+ I + b'2X '+2 + + b"n-,xn = V" 

where VI' •.. , V, is a new sequence of constants, constructed out of the ui · 

We then solve the system (I') directly by choosing x,+ l' ... , xn arbitrarily 
and solving for X I'X2' , •• , x" using (I'). In this way, we find all solutions 
of (I'), and hence all solutions of (I). 

EXAMPLE 1. Solve the system 

{
2X + 3y + z = u, 

x - y - z = v, 

3x + 2y = w, 

(I) 

where u, v, ware given numbers. Subtracting twice the middle line from the 
top line, and then three times the middle line from the bottom line, we get 
the equivalent system: 

{

X - y - z = v, 
5y + 3z = u - 2v, 
5y + 3z = w - 3v. 

(I ') 

By a similar procedure, we get the following system (l If), equivalent to (l '), 
and, hence, also equivalent to (l): 

{

X - y - z = v, 

5y+3z=u-2v, (I") 
0= (w - 3v) - (u - 2v) = w - u - v. 

Observe that (1") does not have solutions for every choice of u, v, w. The 
bottom line in (l") implies that if (1") has a solution, then w = v + u, One 
more step, adding ~ times the middle of line (l") to the top line, gives 

{

X - ~z = v + Hu - 2v) = ~u + iv, 

y+iz=~u-~v, 

0= w - u - v. 

(1 If') 

(1"') has the form (I') discussed above. To solve (1"'), we must have 
w = u + v. Under this assumption, we give z an arbitrary value t and find 
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{

X = lU + lV + 1 t 5 5 5' 

y=tu-~v-tt, 

z = t. 

(2) 

For different choices of t, (2) provides us with all solutions of (I'") and, 
hence, all solutions of our original system (I). In particular, take u = 5, 
v = 10, w = 15. Then the system 

{
2X + 3y + z = 5, 

x - Y - z = 10, 
3x+2y = 15 

is solved by fixing a value t and setting 

x= 1 +6+~t = 7+~ t, 

y= 1-4-tt = -3-t t, 
z = t. 

One can check this by inserting these values in the system (3). 

Exercise 1. Find all solutions of the system 

2x + 3y + z = 5, 
x - Y - z = 10. 

(3) 

Exercise 2. Find conditions on u" U2, U3, U4 under which there exists a solution x" 
X2, X3, X4 of the system: 

x, - X2 = u" 
2x, + X3 = U2, 

x,- X4= U3, 

X2 - X4 = U4' 

Assuming these conditions are satisfied, find all solutions of the system. 

EXAMPLE 2. Solve the system in four unknowns: 

{ 

x,+ X2=U" 

x2 + x> = U2' 
X3 + x 4 = u3' 

2x, - 3X2 = U4' 

We can easily see that this system is equivalent to 

1 
X2 ~ 5;; : ~: ,- 2u, , 

X3 + x 4 = U3' 

2x, - 3x2 = u4 , 

and (4'), in turn, is equivalent to 

(4) 

(4') 
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I-SX2=U4 -2UI ' 

X3 = HU4 - 2uI) + U2 = - ~UI + U2 + t U4' 

2xI = U4 - HU4 - 2ul ) = !UI + ~U4' 
X3 + X4 = U3' 
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(4") 

and, at last, (4") is equivalent to the system obtained from (4") by keeping 
the three top lines and replacing the bottom line by 

X4 = U3 - (- ~UI + U2 + tU4) 

=~UI- U2+ U3-!U4' 

Thus the solution of (4) is unique, with given Uj , and is as follows: 

!XI = foUl + tU4' 

X2 = iUI - tU4' 

X3 = .- i u I + U2 + t u4 , 

X4 = iUI - U2 + u3 - tU4' 

(5) 

inserting these values for the Xi in (4), we can check that our solution is 
correct. 

Note: In Example 1, the solution of the system (1) was not unique. Also, 
in Example 1, the solution exists only for certain choices of u, v, w. In 
Example 2, the solution was unique and exists for every choice of ul , U2' U3' 

U4' What can be said about the existence and uniqueness of the solutions for 
the system (1)7 We state, without proof, the following basic result for the 
case k = n. Let us denote by (H) the homogeneous system corresponding to 
(I), obtained by setting uj = 0, i = 1, ... , k, in (I). 

Theorem 4.2. Let k = n. We distinguish two cases: 

(i) (H) has only the trivial solution O. Then the inhomogeneous system (I) has 
a unique solution for every choice of the uj • 

(ii) (H) has a non-trivial solution. Then for certain uj , (I) has no solution. 
Also, the solution of (I) is never unique. 

A proof of this theorem will be given in Chapter 5.2. 

The following example will illustrate how Theorem 4.2 can be used in 
proofs. 

EXAMPLE 3. Given three points in the plane: (XI' YI)' (x2' Yl), (X3' Y3)' 
which are not collinear, show that there exists a circle which passes through 
the three points. 

The circle C with center (xo, Yo) and radius R has the equation 

(x - XO)2+ (y - YO)2= R2 



230 Linear Algebra Through Geometry 

or 

X2 - 2xxo + x5 + y2 - 2yyo + Y5 = R2. 

We can rewrite this in the form 

X2 + y2 + ax + by + c = 0, 

where a, b, c are certain constants. This circle passes through our three 
given points if and only if 

Xi2+Yi2+axi+bYi+C=0, i=I,2,3. 

Note that Xi and Yi are given numbers and a, b, and c are numbers to be 
found. We can rewrite this system in the form: 

{

X I a + Y I b + c = U I , 

x2a + Y2b + c = u2, 
x3a + Y3b + c = U3 , 

(6) 

where ui = - xl- yl. We regard (6) as an inhomogeneous system of 
equations in the unknowns a, b, c. The corresponding homogeneous system 
is the following: 

{
Xla + Ylb + c = 0, 

x2a + Ylb + c = 0, 
x3a + Y3b + c = 0, 

(7) 

Suppose that this system has a nonzero solution a, b, c. Then the line 
defined by 

ax + by + c = ° 
passes through each of our three points. This contradicts the assumption 
that the points are not collinear. Hence, (7) has only the trivial solution. 
Thus we have case (i) in Theorem 4.2 for the system (6), and so (6) has a 
solution a, b, c. It follows that 

i = 1,2,3. 

The equation 

X2 + y2 + xa + yb + c = ° 
is thus satisfied by (Xi' Y), i = 1,2,3. This equation can be written 

( a)2 ( b )2 a2 b2 
x+} + y+} =-c+ 4 + 4 ' 

which represents a circle which passes through each of the three points. 

Note: The existence of this circle could also be shown by elementary 
geometry. However, the method we used, based on Theorem 4.2, is applica­
ble to a wide variety of situations, some of which are given as exercises at 
the end of this chapter. 
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§2. Geometric Interpretation 

What is the geometric interpretation of the set of solutions of an in­
homogeneous system (I)? In the case of a homogeneous system of linear 
equations in n-dimensional space for n :0;;;; 4, we have seen that the solution 
set is either empty, the whole space, or a line, a plane, or a hyperplane 
through the origin. Consider the following example in the plane. 

EXAMPLE 4. Let L consist of all vectors X = (x, y) in ~2, such that 

2x + 3y = 5. (8) 

Clearly, L is a straight line that does not contain the origin. Let Lo denote 
the solution set of the homogeneous equation obtained by replacing the 
right-hand side by 0: 

2x + 3y = O. (9) 

The set Lo is a line through the origin. How are L are Lo related? We can 
easily find one solution for the inhomogeneous equation (8), for example, 
the point (1, 1). If (x, y) satisfies 2x + 3y = 5, then 2(x - 1) + 3(y - 1) = 0 
so (x, y) - (1, 1) is a solution of the homogeneous equation. We can obtain 
any solution (x, y) of the inhomogeneous equation by adding the particu­
lar solution (1, 1) to a solution of the homogeneous equation. Geometri­
cally speaking, we can obtain the solution set L of (I) by moving the 
solution set Lo of (H) parallel to itself, translating the line Lo by the fixed 
vector (1, 1) (see Fig. 4.3). 

This procedure generalizes to arbitrary dimensions. 

L 

Figure 4.3 
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Proposition 1. Let W be the set of solutions in IRn of the inhomogeneous 
system of equations (I). Then there is a vector xo, so that any element of W 
can be written as Xo + Y, where Y is a solution of the associated homoge­
neous system (H). Thus, W is obtained by translating the solution set of (H) 
by the vector Xo. 

To show this, we write the system (I) in the form: 

all 

a l2 

akl 

ak2 

(I) 

where Al = , ... , Ak = . Choose XO = satisfying (I). Then if 

a ln 

X satisfies (I), 

Al . (X - Xo) = Al . X - Al . XO = Al . X - UI = UI - UI = o. 
Hence, 

AI· (X - Xo) = o. 
Similarly, Aj . (X - Xo) = 0, j = 2, ... , k. Thus X - XO satisfies the homo­
geneous system (H) which corresponds to (I). 

We denote by S the set of solutions of the homogeneous system (H). 
If X is a solution of (I), then Y = X - XO is in S and X = Y + Xo. 

Conversely, if X has this form, then 

AI· X = Al ·(Y + XO) = AI· Y + AI· XO = 0 + ul = ul . 

Similarly, Aj · X = uj for all j. So X is in W Thus we have shown: X is in 
W, i.e., X is a solution of (I), if and only if X lies in the translation of S by 
XO, and this is what Proposition 1 asserts. 

Exercise 3. Let T be the subset of 1R4 defined by the equation 

2Xl - 3X2 + X3 + 5X4 = 10. 

Find a hyperplane S in 1R4 and a vector XO in 1R4 such that T is the translate of S 

by Xo. 

§ 3. Exercises 

Exercise 4. Let (Xl> YI), (X2' Y2), (X3' Y3) be three non-collinear points in the plane 
with XI, X2, X3 all different. Show that there exists a parabola P with equation 

Y = ax2 + bx + c, 

where a, b, c are constants and a =F 0, such that each of the three given points lies 

on P. 
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Exercise 5. Find the coefficients a, b, e of a parabola y = ax2 + bx + e which 
passes through the points 

(1,6), (2,4), (3,0). 

Exercise 6. (a) Show that a sphere in 1R3 has an equation: 

x2 + y2 + z2 + ax + by + ez + d = 0, 
where a, b, e, d are constants. 

(b) Given four points (xj , Yj' Zj)' j = 1,2,3,4 in 1R3 such that they do not all lie in 
a plane, show that there is a sphere passing through all four points. 

Exercise 7. Find an equation for the sphere which passes through the points 
(1,0, I), (0,2,3), (3,0,4), (I, I, I). 

Exercise 8. Find a cubic curve with the equation y = ax3 + bx2 + ex + d passing 
through the four points: (I,O), (2,2), (3, 12), (4,36). 

§4. Partial Fractions Decomposition 

EXAMPLE 5. We wish to express the function 

f(x) = (x - I)(x ~ 2)(x - 3) 

in the form 

f( ) - abc x ---+--+--x-I x-2 x-3' (10) 

where a, b, c are constants to be found. Multiplying both sides by (x - I) 
(x - 2) (x - 3), we see that (10) is equivalent to 

1= a(x - 2)(x - 3) + b(x - I)(x - 3) + c(x - I)(x - 2) 

which can be written as 

I = (a + b + C)x2 + (- Sa - 4b - 3c)x + 6a + 3b + 2c. 

This is equivalent to the system 

{
a + b + c = 0, 

- 5a - 4b - 3c = 0, 
6a + 3b + 2c = 1. 

We easily solve this and find: 

a=!, b= -I, C =l 2 • 

Hence, 

-:----:'7~I=--=~__=_:_ 1/2 - 1 1/2 
(x - I)(x - 2)(x - 3) = -x---I + -x---2 + -x---3 . 

(II) 
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Exercise 9. Express the function 

f(x) = I 
(x - I)(x + I)x 

in the form 

f(x) = _a_ + _b_ + E. . 
x-I x+1 x 

Exercise 10. Find a, b, c, d such that 

I =_a_+_b_+_c_+_d_ 
(x - I)(x - 2)(x - 3)(x - 4) x - I x - 2 x - 3 x - 4 . 

Exercise 11. Let aI, ... , an be n distinct numbers and set 

f(x) = I 
(x - a\)(x - a2) ... (x - an) 

An identity 

(12) 

is called a partial fractions decomposition of f(x). 

(a) Show that (12) is equivalent to an inhomogeneous system of n linear equations 
in the unknowns c\, ... , Cn' 

(b) Show that the corresponding homogeneous system has only the trivial solution. 
(c) Use Theorem 5.3 to show that there exists constants c\, ... , Cn which satisfy 

(12). 

Exercise 12. Does the system 

{ 

x\ + 2X2 + 3X3 + 4X4 = I, 
2x\ + 3X2 + 4X3 + IX4 = 0, 

3x\ + 4X2 + IX3 + 2X4 = 0, 
4x\ + IX2+2x3+3x4=O 

have a solution? If it does, find all solutions. 

(13) 
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Vector Spaces 

We shall use the symbols 

E: belongs to and ¢: does not belong to. 

For instance, the point (3,3) E L, where L is the line in the xy plane with 
equation x = y. 

The basic notions of vector algebra that you have been studying in the 
spaces 1R2, 1R3, etc., make sense in a more general context, the context of 
vector spaces. A vector space V is a collection of objects called "vectors," 
which we denote by capital letters X, Y, U, etc., together with the notions 
of "+" and "." satisfying rules (4)-(11) given in Chapter 2.0. The objects 
that make up a vector space might be polynomials, trigonometric func­
tions, 2 x 2 matrices, or many other kinds of things. Once we have 
defined addition, +, and scalar multiplication, ., on these objects and 
verified rules (4)-(11), we can think of them as geometrical objects analo­
gous to the familiar vectors in 1R2 and 1R3. 

EXAMPLE 1. Fix an integer n ~ 1. The space IR", defined in Chapter 4.0, 
consists of n-tuples of real numbers and is a vector space. 

EXAMPLE 2. Let S be a subset of IR" such that whenever X, YES, then also 
X + YES, and if t E IR, also tX E S. Equivalently, we could say: sX + 
tY E S for all s, t E IR. 

Then, S is called a subspace of IR". The space S inherits the notion of 
vector addition and scalar multiplication from IR", evidently obeys our 
rules (4)-(11), and so, is a vector space. 

For instance, the plane 2x + y - 5z = 0 in 1R3 is a subspace of 1R3. 
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EXAMPLE 3. Consider a homogeneous system of linear equations in Xl' ... , 

(H) 

where A l' ... , Ak are given vectors in IRn and X = (x l' ... ,xn). Denote by 
S the subset of IRn consisting of all solutions X of this system (H). 

Exercise 1. Show that S is a subspace of \Ro, and so, that S is a vector space under 
the usual addition, +, and scalar multiplication, '. 

EXAMPLE 4. Fix an integer n ~ 1. OJ> n denotes the set of all polynomials f 
of degree :::;; n, with real coefficients: 

f = ao + alx + a2 x2 + ... + akx \ 

where ak =F 0 and k :::;; n. Then k is the degree of f; (we write k = degf). If 
f and 9 both are in OJ> n' then degf :::;; n, deg 9 :::;; n, and so, deg(f + g) :::;; n, 
so f + 9 E OJ> n' If f E OJ> n' t E R, then if E OJ> n' It is easy to check that with 
these definitions, OJ> n is a vector space. 

Put On = set of all polynomials of degree exactly n, where n is some 
fixed integer, and add the elements of On as polynomials. Notice that On 
is not a vector space. For instance, f = 2x + x2 and 9 = 1 - 3x + 2X2 are 
both E O 2 , but 2f - 9 = 7x - 1 has a degree of 1 and so ¢ O 2 , 

EXAMPLE 5. Fix an integer n ~ 1. Cn denotes the set of all functions 

tfo(x) = al cos X + a2 cos 2x + ... + an cos nx, 

where al , a2' ... , an E R. If 

I/I(x) = bl cos X + b2 cos 2x + ... + bn cos nx, 

then 
(tfo + I/I)(x) = (a l + btl cos x + ... + (an + bn) cos nx, 

so tfo + 1/1 again E Cn. Also, ttfo E Cn for xt E IR. So, Cn is a vector space. 

EXAMPLE 6. Fix an integer n ~ 1. Let Tn denote the set of all functions 

n 

y(x) = ao + L (aj cosjx + bj sinjx), 
j=l 

a. b· E R. Defining addition and scalar multiplication in the usual way, we 
s~~ that Tn is a vector space. We shall refer to the "vectors" in Tn' that is, 
to the functions y as trigonometric sums of order:::;; n. 

In Example 2 we defined subspaces of IRn. In a similar way, any subset S 
of a vector space V that is such that, whenever X, YES and s, t E IR, then­
sX + ty E S, is called a subspace of V. 

Exercise 2. Show that, for fixed n, Co is a subspace of If o· 
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. (a b) EXAMPLE 7. Denote by /MI 2 the collection of all 2 x 2 matnces cd· 

Define 

(: ~) + e: !:) = (:::: !: !:) 
and t (: !) = G: :!). Then /MI 2 is a vector space. 

EXAMPLE 8. Let C denote the collection of all complex numbers w = 
u + iv, where u, v E IR and i = J=1. Add complex numbers in the usual 
way: (u + vi) + (u' + iv') = (u + u') + i(v + v'), and define t(u + iv) = tu + 
itv, for t E IR. Then C is a vector space. 

EXAMPLE 9. Let IJl> denote the collection of all polynomials in the variable 
x, without restrictions on the degree. Add them in the usual way of adding 
polynomials, and similarly for scalar multiplication. Then IJl> is a vector 
space. Each vector space 1Jl>" is a subspace of 1Jl>, for n = 1,2, .... 

In Chapters 2.0 and 3.0, we discussed linear dependence and linear 
independence of sets of vectors in 1R2 and in 1R3. 

Now, let V be a vector space and Y t, ... , Y k be a set of k vectors in V. 
We say that the set is linearly dependent if one of the Yi is a linear 
combination of the rest. Equivalently, we can say that Y l' ... , Y k is 
linearly dependent if there exist scalars S 1, ••• , Sk not all 0, such that 

(1) 

To see this, note that if (1) holds and one of the Si' say, S2' is not 0, we 
can solve for Y 2' getting 

S1 S3 Sk 
Y 2 =--Y1 --Y3 -···--Yk , 

S2 S2 S2 

and so, Y 2 is a linear combination of the remaining Yi and, thus, the set 
Y 1> Y 2, •.• , Y k is linearly dependent. 

Conversely, suppose the set Y 1, ••. , Y k is linearly dependent. Then, for 
some i, 

Y i = C1 Y 1 + ... + Ci-t Y i - 1 + CH1 Y i+1 + ... + Ck Yk, 

and so, we have 

C1 Y 1 + ... + Ci-1 Y i- 1 + (-I)Yi + CH1 Y H1 + ... + Ck Y k = O. 

Thus, (1) can be solved by the set of scalars C1> ... , Ci-1, -1, Ci+1, ... , Ck' 

which are not all O. Thus, deciding about linear dependence amounts to 
seeing whether (1) can be satisfied by scalars S1' ••• , Sk' which are not all o. 

A set of vectors A1, ••• , Ak in V, which is not linearly dependent, is 
called linearly independent. 



CHAPTER 5.1 

Bases and Dimension 

Let V be a vector space. Let Y 1, ... , Y, be a set of vectors in V. The span 
of this set of vectors is defined as the collection of all vectors Y in V of the 
form 

Y = Sl Y1 + S2 Y2 + ... + s,Y" 

The span of Y 1, ... , Y, is denoted 

[Y 1, ... , Y,]. 

Sl' •.• , S, E IR. 

A set of vectors Xl' ... , Xk in V is called a basis of V if it has the 
following two properties: 

(i) The span of Xl' ... , Xk is V, and 
(ii) the set Xl' ... , Xk is linearly independent. 

Suppose that Xl' ... , Xk is a basis of V and consider a vector X in V. By 
(i), there exist scalars C l' ... , ck , such that 

X=C1X1 +···+Ck Xk • 

If c~, ... , c" is a second set of scalars, such that 

X=C~X1 +"'+c"Xk , 

then 

0= (c 1 - C~)X1 + ... + (ck - c,,)Xk • 

(1) 

It now follows from (ii) that c 1 - c~ = 0, ... , Ck - C" = 0, and so, C 1 = C~, 
C2 = C2, ... , C. = c~. Thus, each vector X in V has one and only one 
representation in the form (1). Conversely, if Xl' ... , Xk is a set of vectors 
in V, such that every vector X in V has one and only one representation 
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in the form (1), then properties (i) and (ii) hold, and so, Xl' ... , Xk is a 
basis of V. 

Exercise 1. Prove that if Y l' ... , Y, is any set of vectors in V, then [Y l' ... , Y,] is 
a subspace of V. 

Examples of Bases. 

EXAMPLE 1. The vectors E l , ... , En form a basis of IRn, called the standard 
basis of IRn. 

EXAMPLE 2. Let V be the vector space of all vectors X 10 IRn such that 
Xl + X 2 + ... + Xn = O. The (n - I)-tuple of vectors 

111 

-1 0 0 

o , -1 '''., 0 

o o -1 

is a basis of V. 

Exercise 2. Verify that they do form such a basis. 

EXAMPLE 3. The polynomials 

1, X, X2, ... , x" 

form a basis of the vector space IPn. 

EXAMPLE 4. The polynomials 

1, 1 + x, 1 + X + X2 

form a basis for the vector space IP 2' 

Exercise 3. Verify this. 

Exercise 4. Exhibit a basis for the vector space T". 

Note: In our definition of a basis, we require that a basis of V consist of 
a finite set of vectors in V. Most of the vector spaces we are interested in 
have a basis (in fact, they have many different bases). However, not every 
vector space has a basis in our sense. 

EXAMPLE 5. The vector space IP of all polynomials has no basis. 

PROOF. Suppose the polynomials PI' ... , Pk form a basis of IP. Let d 
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denote the largest degree of these k polynomials. Since x d+1 E iP', we have 
a representation 

X d+1 = C1 P 1 + ... + CkPk' 

The right-hand side is a polynomial of degree ~ d, while the left-hand side 
has degree d + 1. This is impossible. So iP' has no basis. 

Bases of \R3• Let At> A2, A3 be any linearly independent triple of vectors 
in R3. We claim that A1, A2, A3 is a basis of \R3. We can see this in the 
following way: the collection of all vectors SlA1 + S2A2 with Sl, S2 E R is a 
plane II. By hypothesis, A3 sticks out of II. If X is any vector in \R3, we 
may draw a line L through the tip of X which is parallel to A3 • Then L 
intersects II at a point P. We now have: The vector OP = u1A 1 + u2 A 2 

for certain scalars u1, U2' Also, the vector from P to the tip of X = WA3 
for some scalar w. Since OP + PX = OX, we have 

u1 A 1 + u2 A2 + WA3 = X. 

So our triple spans \R3, and, being linearly independent by hypothesis, it 
forms a basis for \R3, as asserted. The situation in \R" is similar for n ~ 4. 
In studying this situation in \R", we shall use a method of reasoning called 
the Principle of Mathematical Induction: A statement concerning \R" that 
is true for a certain value of n (say n = 3) and that, whenever it is true for 
\R" is also true for \R"+1, is true for every value of n ~ 3. This is because, 
being true for 3, it must hold for 4, hence, for 5, and so on. 

Theorem 5.1. Let A1, A2, ... , All be a linearly independent n-tuple of vectors 
in \R". Then A1, ... , All is a basis of \R". 

PROOF. We shall show that if the statement of the theorem is true for a 
certain value of n, then it is also true for n + 1. 

We then suppose it is true for n. We consider a linearly independent 
(n+ I)-tuple of vectors A1, ... , AII+1 in \R"+1. We have to show that 
[A 1 , ... , AII+1] = \R"+1. 

Figure 5.1 
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We can write 

where V l E W, Zl E IR. Similarly, 

where Vj E IRn, Zj E IR, 2 ~ j ~ n + 1. Suppose that all Zj = O. Then, 

A = (Vl) 
1 0' 

The n-tuple V l , ... , Vn in IRn is linearly independent, for if Lj=l CjVj = 0, 
then Lj=l ciA) = 0, and so, the Cj = 0 for all j. Since Theorem 5.1 is true in R" 
(by assumption), V l' ... , Vn is a basis for IRn, and so, V n+1 = Lj=l tjVj for 
certains scalars tj • It follows that 

This is impossible. So the assumption that all Zj = 0 must be false. Some 
Zj =I- 0, and by renumbering the Aj , we get Zn+l =I- O. Then, 

all 
al2 [a",.,] 

Al= A = an+1.2 
n+1 , 

aln 
an+l,n 

Zl 
zn+l 

for certain scalars aij' The last entry in the vector 

. ( Zl ) IS Z 1 - - Zn+1 = O. 
Zn+l 

So, 

for some Bl in IRn. Similarly, 

Aj - C:~J An+l = (~ ). Bj in IRn, (2) 

for j = 1, ... , n. 
The n-tuple B1 , ... , Bn in Rn is linearly independent, for otherwise some 

linear combination of AI' ... , An will equal A n+1 • (Do the calculation.) 
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Since Theorem 5.1 is true in Rn, these exist scalars c l' •.• , Cn, with 

in Rn. 

Hence, 

(3) 

o 
Let us write S for the span [A l , ... , A n+1]. The left-hand side of (3) is in 

S, so El E S. Similarly E 2 , ... , En E S. How can we capture E n+ l ? We have 

So, 
Zn+1En+l = An+1 - an+ l , lEl - ... - an+1' nEn E S. 

Hence, zn+l En+1 E S, and so, En+l E S. 
Thus, S contains every E j in [Rn+l and, hence, S = [Rn+l. We are done: 

We have shown that Al , ... , An+ l is a basis in [Rn+1. So, Theorem 5.1 is true 
in [Rn+l. Since Theorem 5.1 is true in [R3, it follows that the theorem is true in 
[Rn for every a ~ 3. It is also true for [R2 and [Rl. (Can you determine why 
this is true?) So it is true for all n. 

Corollary. Every (n + i)-tuple of vectors in [Rn is linearly dependent. 

Exercise 5. Deduce this corollary from Theorem 5.1. 

We can use Theorem 5.1 and the corollary to get information about 
bases in arbitrary vector spaces. 

Let V be a vector space, and let C l , ... , C k be a basis of V. For each 
vector X in V, we can write 

k 

X = L XiCi 
j=l 

(4) 

and the scalars Xi are uniquely determined by X. We define a map <I> from 
V to Rk as follows: for each X in V, 

~(X)~ [Jl 
where the Xi are defined by (4). 
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Exercise 6. Prove that the map <I> has the following properties: 

<I>(sX + tY) = s<l>(X) + t<l>(Y), 'IX, Y E V, s, t E R (5) 

(We say: <I> is a linear map). 

If X"# Y, then <I>(X) "# <I>(Y). (6) 

(We say: <I> is one-to-one.) 

If T E IRk, then there is an X in V with <I>(X) = T (7) 

(We say, <I> maps onto IRk). 
Now, let V be a vector space with a basis B 1, ... , Bn consisting of n 

vectors and another basis C 1, ... , Ck consisting of k vectors. 

Claim. k ~ n. Suppose the claim is false. Then k < n. We shall see that this 
leads to a contradiction. . 

For each X in V, we can write uniquely, 

k 

X = L XjCj , Xj in IR, 
j=l 

and we define a map <I> from V to IRk as above by 

Consider the (k + 1)-tuple of vectors <I>(Bd, ... , <I>(BHd in IRk. By the 
corollary to Theorem 5.1, this (k + 1)-tuple is linearly dependent, so there 
exist scalars t 1 , ... , tH1 , not all 0, such that 

HI 

L tj<l>(Bj ) = O. 
j=l 

(8) 

Using (5) in Exercise 6, we see that the left-hand side in (8) equals 

(
k+1 ) 

<I> r. tjBj . 
J=l 

So 

and, hence, by (6), 
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This is impossible, since B 1, ••• , Bn is a basis of V and, hence, is linearly 
independent. We have arrived at a contradiction. 

So the claim is true and k ~ n. A similar argument gives n ~ k. Hence, 
n = k. We have proven the following important fact about vector spaces. 

Theorem 5.2. Let V be a vector space. Every two bases of V consist of the 
same number of vectors. 

If V is a vector space that has a basis of n elements, then every other 
basis of V also has n elements. We define the dimension of V, denoted 
dim V, to be the integer n. We say: V is n-dimensional. 

EXAMPLE 6. dim IIln = n, because the standard basis of IIln has n elements. 

EXAMPLE 7. dim P n = n + 1, because of the basis of Example 3. 

Exercise 7. Calculate the dimension of the subspace of If) 4 consisting of all polyno­
mials in If) 4 with P(O) = P( 1). 

Do the same for the subspace of If) 5 consisting of all polynomials P in If) 5 with 
P(O) = P'(O) = 0, where P' denotes the derivative of P. 

Exercise 8. Let V be a vector space of dimension n. Let C I, ... , Ck be a linearly 
independent k-tuple of vectors in V. Show that k ~ n. 

Hint. Choose a basis HI' ... , Hn of V. As above, construct a one-to-one linear 
transformation ell of V on IR". Consider the k-tuple of vectors eII(C I ), ... , eII(Ck ) in 
IR", and use the corollary of Theorem 5.1 to conclude that k ~ n. 

Exercise 9. Let V be a vector space of dimension n. Let W be a subspace of V. 

(a) Show that W has dimension ~ n. 
(b) Show that if W has dimension n, then W = v. 



CHAPTER 5.2 

Existence and Uniqueness of Solutions 

Recall the inhomogeneous system (I) of k linear equations in n unknowns, 
which we studied in Chapter 4.4. We consider the case k = n, where the 
number of equations to be solved equals the number of unknowns, and we 
shall use our results about bases in IRn in the preceding chapter to study 
the question of existence and uniqueness of solutions of the system (I), 

We consider the vectors 

and call them the column vectors of the system (I), Putting U = (u 1"", un) 
and X = (x 1, .. , , Xn), we can write (I) in the form 

n 

L XiCi = U. 
j=l 

(I') 

Claim 1. Fix U in \Rn, There exists a solution X of the system (I') with U as 
right-hand side if, and only if, U E [C l , .. " Cn]. 

PROOF, If there is a solution of (1'), then U E [C 1, , , , , Cn]. Conversely, if 
U E [C 1, , , , , Cn ], then there exist scalars ti so that U = L~=l tiC i , and so, 
t 1, .. " tn solves (1'), 

Claim 2. [C l , .. " Cn] = \Rn if, and only if, the n-tuple C l , .. " Cn is linearly 
independent. 
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PROOF. An n-tuple of vectors in !Rn is a basis of !Rn if, and only if, the 
n-tuple is linearly independent. 

Claim 3. The n-tuple C l' ... , Cn is linearly independent if, and only if, the 
homogeneous system (H), 

has 0 as its only solution. 

PROOF. (H) can be written in the form 

n 

L XjCj=O. 
j=l 

(H) has 0 as its only solution precisely when the n-tuple C h ... , Cn is 
linearly independent. 

Theorem 5.3. If the homogeneous system (H) has 0 as its only solution, then 
the inhomogeneous system (I) has a unique solution for each choice of 
right-hand side U. 

PROOF. Existence of a solution follows from the claims 1, 2, 3. Uniqueness 
holds because if X and X' are solutions of (I) corresponding to the same 
right-hand side U, then X - X' is a solution of (H) and so, by assumption, 
=0. 

Theorem 5.4. If the homogeneous system (H) has a non-zero solution, then 
there exists U such that (I) has no solution for this U. 

PROOF. Claim 3 yields that the n-tuple C l' ... , Cn is not linearly indepen­
dent, hence, does not span !Rn, so there exists U in !Rn, which does not 
belong to [C l' ... , Cn], and so, (I) has no solution for this U. 

Exercise 1. Show that if the column vectors Cl> ... , Cn are linearly independent, 
then (I) has a solution for each right-hand side U. 

Exercise 2. Define row vectors R1 , •.. , R. in IR· by Rl = (au, ... , aln)' etc. Show 
that if the n-tuple of row vectors is linearly independent then (I) has a solution for 
every U. 
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The Matrix Relative to a Given Basis 

In Chapter 3.2 we assigned to each linear transformation T of 1R3 a matrix 
m(T) as follows: 

T [::] ~ 
[a,x, + a,x, + a,x,] 

If blx l + b2x 2 + b3 X 3 , then 

ClX l + C2X 2 + C3 X 3 

[a, a2 a,] 
m(T) = bl b2 b3 • 

Cl C2 C3 

We shall now extend this definition to assign to each linear transforma­
tion T on an n-dimensional vector space V with a given basis B an n x n 
matrix called the matrix of T relative to the basis B, and denoted m8(T). 

If X is a vector in V, then X has an n-tuple of coordinates Xl' .•. , Xn 

relative to B given by the equation 
n 

X = L xiBi, 
j=l 

(1) 

where B 1, •.. , Bn are the vectors making up the basis B. The vector TX 
has an n-tuple of coordinates Yl' ... , Yn' such that 

n 

TX = L yjBj . 
j=l 

We shall exhibit an n x n matrix 

(2) 
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such that 

[
all al2 
a2l a22 

anl an2 

that is, such that we have 

for every vector X given by (1). 

... aln] [Xl] [Yl] ... a2n X2 Y2 
· ., · . · . 

ann Xn Yn 

n 

Yl = L aljXj 
j=l 

n 

Yn = L anjXj 
j=l 

(3) 

We choose the numbers aij as follows: since B 1 , ... , Bn forms a basis, we 
can find scalars aij' 1 ~ i, j ~ n, such that 

n 

TBl = L akl Bk , 
k=l 

n 

TB2 = L ak2 Bk , 
k=1 

n 

TBn = L aknBk' 
k=l 

Applying T to equation (1), we get 

It now follows from (2) and the fact that the Bk are linearly independent 
that 

• 
Yk = L akjxj , 

j=l 
k = 1,2, ... , n. 

Thus, (3) holds, as claimed. 

Definition 1. The matrix 

[
all a12 ... aln] 
a2l a22 ... a2n 

a. l a.2 a.n 

is called the matrix of T relative to the basis B, and is denoted m8(T). 
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Exercise 1. Show that the columns of the matrix mB(T) are the coordinate n-tuples 
of the vectors TB l' TB2 , ... , TB., relative to the basis B. 

EXAMPLE 1. Let V be 1R2 and let T be the linear transformation of 1R2 
given by the equations 

x' = 2x + 3y, 

y' = x - y. 

Take B to be the basis: Bl = C)' B2 = (-D· Then 

TBI = (~) = 2C) + (-1)( -D = 2Bl + (-I)B2' 

TB2 = ( _ ~) = ( - 3) (!) + ( -1) ( -.~) = - 3B 1 + ( - 1 )B2 · 

Thus, the coordinate pair of TBI relative to the basis B is (2, -1) and 
that of TB2 is (- 3, -1). By Exercise 1, then, 

mB(T)=(_~ =D· 
EXAMPLE 2. Let S be the linear transformation of 1R2 given by equations: 

x' = 3x + 4y, 

y' = 4x - 3y. 

Let B' be the basis B'I, B~ where B'I = G) B~ = ( - ~). Then, 

Hence, 

SG) = CSO) = sG) + o( -~). 
s( -~) = (-:0) = oG) -s( -~). 

mB'(S) = (~ _~). 
Note: mB'(S) is simpler than the matrix 

of S relative to the standard basis E1 , E2. This is no accident. B' is a basis 
that is tailor-made for the transformation S. (Compare Example 4, Section 
2.6). More generally, given a linear transformation T of a vector space V, a 
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good choice of basis B may yield a matrix mB(T), which has a simple 
form. In Section 7.0 below, we shall pursue such a good choice of basis for 
an important class of linear transformations, the self-adjoint transforma­
tions. 

Theorem 5.5. Let Sand T be two linear transformations of V and B a basis 
of V. Then, 

(4) 

PROOF. We put t = mB(T) and s = mB(S), and we write t ij for the (i,j)­
entry of the matrix t, and Sij for the (i,j)-entry of s. 

Fix a vector X in V and let Xl' ••• , Xn be the coordinates of X. Also, let 
Y1' ... , Yn be the coordinates of TX and Zl' ... , Zn the coordinates of 
(ST)(X) = S(TX). Then, 

and 

Hence, 

n 

Yi = L tijXj' i = 1, ... , n 
j=l 

n 

Zk = L SkiYi> k = 1, ... , n. 
i=l 

n 

Zk = L (s· t)kjXj' 
j=l 

It follows that the matrix s· t = mB(ST), and so, 

mB(S)' mB(T) = mB(ST), 

that is, (4). 

Change of Basis. Given two bases B = (B1' ... , Bn) and B' = (B'l' ... , B~) of 
the vector space V. Each vector X receives two n-tuples of coordinates 
(Xl' ••. , xn) and (x~, ... , x~), where 

n n 

X = L xjBj and 
j=l 

X = L xjB}. 
j=l 

Exercise 2. Show the following: 

(a) There exist matrices C = ((Cjj)) and d = ((d jj», such that whenever (x 1> ... , xn ) 

and (xi, ... , x~) are n-tuples of coordinates of a vector X, as above, then 

• 
xj = L CjkXk, j = 1, ... , n, 

k=l 

(Sa) 
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and 

• 
Xj = L dj1x;, j = 1, ... , n. 

1=1 

(b) c and d are uniquely determined by the relations (Sa) and (Sb). 
(c) d = c- I . 

We use this Exercise in the following proof. 

251 

(Sb) 

Theorem 5.6. Let B, B' be two bases of the vector space V and T be a 
linear transformation of V. Then 

mB,(T) = cmB(T)c-l, (6) 

where c is the matrix in (5a). 

PROOF. Let X be a vector in V and put Y = TX. Let (x l' ... ,xn) and 
(Yl' ... , Yn) be the coordinate n-tuples of X and Y relative to B, and let 
(x~, ... , x~) and (Y~, ... , Y~) be the coordinate n-tuples of X and Y relative 
to B'. Put 

a = mB(T) and a' = mB,(T), 

and let aij' respectively, a;j' be the (i,j)-entry in a, respectively, a'. Fix i. 
Then 

Y; = t CikYk = t Cik (2: akjXj) = 2: (2: Cikakj) Xj 
k=l k=l j j k 

= 2: (ca)ijxj = 2: (ca)ij (2: djIX;) = 2: (2: (ca)ijdjl) x; 
j j I I j 

= 2: (cad)ilx;, 
I 

Hence, 

cad = a'. 
So 

cmB(T)c-1 = mB·(T), 

that is, (6) holds. We are done. 

EXAMPLE 3. V = !P 2 = the space of polynomials x of degree :E;; 2. Let D be 

the transformation of differentiation, that is, Df = df for each polynomial 
dx 

fin !P2' Since the derivative of a polynomial of degree :E;;2 is another such 
polynomial, and since differentiation is a linear operation, D is a linear 
transformation of !P2' We let B be the basis 
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Then, 

So, 
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DBl = 0 = OB1 + OB2 + OB3, 

DB2 = 1 = IBl + OB2 + OB3, 

DB3 = 2x = OB1 + 2B2 + OB3. 

Exercise 3. T is the linear transformation of 1R3 given by equation 

Find a basis B of 1R3 , such that 

m.m~ [! ~ ~l 
Exercise 4. V = iP'3' Take as basis B: 1, x, x 2 , x 3• Let T be the transformation: 
J(x) -> J(x + 1) of iP'3 into iP'3' Find the matrix mB(T). 

Exercise 5. V is the space of all functions 

J(x) = a cos (x) + b sin (x), a, b in R 

Let T be the transformation of V which sends J(x) into J(x + n) for each J, and let 
B be the basis of V with B, = cos X, B2 = sin x. 

(a) Show that T is a linear transformation of V. 
(b) Calculate mB(T). 



CHAPTER 6.0 

Vector Spaces with an Inner Product 

We found it useful to introduce the dot product of two vectors in order to 
study the geometry of 1R2 and 1R3. There is a natural generalization of the 
dot product to an arbitrary vector space, which is called an inner product. 

Let V be a vector space. An inner product (, ) on V is a rule that 
assigns to each pair of vectors X, Y in V a real number (X, Y) in such a 
way that 

if Xl, X2, Y E V and a, bE IR, then 

(aXl + bX2, Y) = a(Xl' Y) + b(X2' V); 

if X, Y E V, then 
(X, Y) = (Y, X); 

(X, X) > 0 if X =f. 0 and (0, 0) = O. 

Properties (1) and (2) imply 

If X, Y 1, Y 2 E V and a, b E R, then 

(X, aYl + bY1) =:; a(X, Yl ) + b(X, Y2). 

(1) 

(2) 

(3) 

(I') 

We express properties (1) and (I') together by saying that the inner 
product is bilinear, property (2) by saying that the inner product is 
symmetric, and property (3) by saying that the inner product is positive 
definite. 

We recognize these three properties as familiar rules for the dot product 
on 1R2 and 1R3. 

Two vectors X, Y in V are called orthogonal (we write: X.L Y) if 
(X, Y) = O. The length of the vector X in V, denoted lXI, is defined by 
IXI = J(X, X). 
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Examples of Inner Products 

EXAMPLE 1. Let V = [Rn. For 

we put 

n 

(X, Y) = X 1Yl + X 2Y2 + ... + XnYn = L x;Yi­
;=1 

EXAMPLE 2. V is a subspace of [Rn. For X, Y in V, define (X, Y) as In 

Example 1. Then ( , ) is an inner product on V. 

EXAMPLE 3. V = [pl •. For 

• • 
f = L ajx j, g = L bjx j 

j=O j=O 

in [pl., define 

(f, g) = !a1 
f(x)g(x) dx. 

Verify that this definition makes (, ) an inner product on [pl •. 

Exercise 1. Express (f, g) in terms of the coefficients ao, ... , an, bo, ... , b •. 

EXAMPLE 4. V = Tn. For 

n 

f = ao + L (aj cosjx + bj sinjx), 
j=l 

• 
g = a~ + L (a; cosjx + bj sinjx), 

j=l 

define (f, g) = g" f(x)g(x) dx. 

Exercise 2. (a) Show that ( , ) is an inner product on T., (b) Express (f, g) in 
terms of the coefficients aj , bja;, bj. 

Exercise 3. With the inner product on iP'2 given in Example 3, (a) find a non-zero 
vector h in iP' 2 such that h 1. 1 and h 1. x. (b) Show that if k E iP' 2 and if k 1. 1, k 1. x 
and k 1. x 2, then k = O. 



CHAPTER 6.1 

Orthonormal Bases 

Let V be a vector space. Let B1, ... , Bn be a basis of V. To each vector X, 
we let correspond a set of scalars Xl' ..• , Xn called the coordinates of X 
relative to the basis B1 , ... , Bn , by putting: 

X = x1B1 + x2 B2 + ... + xnBn. 

Usually, it is laborious to compute the coordinates of a given vector. 

EXAMPLE 5. 

is a basis of [R3. What are the coordinates of the vector X = 

to this basis? 
We write 

(4) 
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Solving the system (4), we find 

and so 

So, 

so 

1 = 2x I + X 2 + 6x I = 8x I + X 2 

0= -Xl + X2 + lOx l = 9Xl + X 2 • 

Xl = -1, x2 = 9, X3 = -2. 

So - 1, 9, - 2 are the coordinates of X relative to the given basis. 
As you see, we can do it but it takes a bit of work. For a certain class 

of bases, the problem of calculating the coordinates of a given vector 
relative to the basis is very easy. These are the so-called orthonormal bases. 

Let V be a vector space with an inner product (, ). An orthogonal set 
of vectors in V is a set of vectors Xl' ... , Xk , such that Xi 1. Xj whenever 
i #- j. 

Exercise 4. Let X I' ... , Xk be an orthogonal set of vectors in V, with Xi #- 0 for 
each i. Show that XI' ... , Xk is a linearly independent set in V. 

An orthogonal set of vectors, each of which has length 1, is called an ortho­
normal set of vectors. If, in addition, the set of vectors is a basis, we call it an 
orthonormal basis of V. Thus, B1 , ••. , B. is an orthonormal basis of V provided 
that (a) (Bj , Bj ) = 0 if i #- j, (b) (Bj , Bj ) = 1 for each i, and (c) B1 , ... , B. is a basis 
of V. 

Theorem 6.1. Let Bl , ... , Bn be an orthonormal basis of V. Let X be a 
vector in V, and let Xl' ... , Xn be the coordinates of X relative to the basis 
Bl , ... , Bn. Then, 

Xi = (X, B;), i = 1, ... , n. (5) 

PROOF. X = Xl Bl + ... + xnBn. Take the inner product of this equation 
with Bi for some value of i and use the bilinearity of the inner product. 
Then 

(X, Bi) = xl(Bl , Bi) + x2 (B2 , B;) + ... + xn(Bn, Bi)· 

Since (Bj , Bi) = 0 whenever j #- i and (Bi' Bi) = 1, this gives (X, Bi) = Xi' as 
was to be shown. 

EXAMPLE 6. Vo is the vector space which is the plane 2x + 3y + 4z = 0 in 
1R3 and the inner product on Vo is that given in Example 2. We seek an 
or;honormal basis of Yo: We have (- 3,2,0) e V and (2,3,4) is a normal 
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vector to Va. Hence, the cross-product of these two vectors: (8, 12, -13) is 
in Vo and is orthogonal to ( - 3, 2, 0). Thus, 

1 1 
Xl = ~(-3,2,0) and X2 = (8,12, -13) 

y9 + 4 .J82 + 122 + (-1W 

is an orthonormal basis for Vo. 

Theorem 6.2. We use the notation of Theorem 6.1. Fix X E V. Then, 
n 

IXI2 = L (X, Bi)2. (6) 
i=l 

PROOF. X = L~=l xiBjo where Xi = (X, BJ 

(X, X) = (~XjBi' ~ XjBj). 

Using the bilinearity of the inner product, we get 
n n 

IXI2 = (X, X) = L xixj(Bjo Bj) = L xf = L (X, Bj)2 
j,j j=l i=l 

as was to be proved. 

Using the same method, we can prove a generalization of Theorem 6.2. 

Theorem 6.3. Let X, Y be two vectors in V. Then, 

n 

(X, Y) = L (X, Bj)(Y, Bj). (7) 
i=l 

Give the proof of this Theorem. 

Existence of an orthonormal basis. Let V be an n-dimensional vector space 
with an inner product ( , ). Then V has a basis B 1, ... , Bn. We shall 
construct an orthonormal basis for V, and our method of construction will 
be Mathematical Induction, as in the proof of Theorem 5.1. 

Claim. For each k, 1 ~ k ~ n, the subspace [B1, ••• , Bk ] has an ortho­
normal basis. 

PROOF OF CLAIM. For k = 1, the one-element basis I:: 1 is an orthonormal 

basis of [B1]. 

Suppose that the claim is true for k. Let Glo ... , Gk be an orthonormal 
basis for [B1 , ••• , Bk ]. Put 

k 

C = Bk+1 - L (Bk+1' G i ), G j • 

i=l 
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If C = 0, Bk+l = L~=dBk+l' GJGj . So Bk+l E [G 1 , ... , Gk ] = [B 1 , ••. , Bk], 
contrary to the fact that Bk+l is not a linear combination of B 1 , .•• , Bk. 
So, C -# 0. Put 

Then, 
k 

Bk+1 = L (Bk+1' GJG i + \Ci Gk+l· 
i=1 

(8) 

Hence, 

(9) 

where DE [G 1 , ... , Gk ] = [Bl' ... , Bk]. Equation (8) yields Bk+1 E [G 1, •.. , 

Gk+l]. Also, B1, ... , BkE[Gt> ... ,Gk+l]. Hence, [Bl, ... ,Bk+l]~[Gl' ... ' 
Gk+l]. Equation (9) gives that Gk+l E [Bl' ... , Bk+1]. Also, G 1 , ••. , G k E 
[Bl' ... , Bk+l]. Hence, [G 1 , ... , Gk+l] ~ [Bl' ... , Bk+l]. 

If we are given two sets of vectors, each of which is contained in the 
other, then the two sets are equal. So 

(10) 

For each j ~ k, 

S. 1 
lllce Gk+l = [CIC, hence, also (Gk+l' G) = 0. It follows that G 1, ..• , Gk+1 

is an orthonormal set of vectors. Because of (10), then, G 1 , G 2 , ... , Gk+l is 
an orthonormal basis for [Bl' ... , Bk+l]. 

So the claim is true for k + 1. Since the claim is true for k = 1, it 
follows that it is true for k = 2, 3, ... , n. Then G 1, ••. , G. is an ortho­
normal basis for [Bl' ... , B.] = V. We have proved the following: 

Theorem 6.4. Let V be an n-dimensional vector space with an inner product. 
Then V has an orthonormal basis G l' ... , G •. 

This process is called Gram-Schmidt orthonormalization. 

Exercise 5. Find an orthonormal basis for each of the following subs paces V of 
~4, where the inner product on V is as in Example 2. 

(a) V has the equation X4 = 0; 
(b) V has the equation XI + X2 + X3 + X 4 = 0; 
(c) V is given by the equations XI = X2 and X3 = X4· 

Exercise 6. Find an orthonormal basis for the space T 2 of all functions: 

f(x) = ao + a l cos X + bl sin X + a2 cos(2x) + b2 sin(2x), 

where (f, g) = J6" f(x)g(x) dx for f, g in T 2 gives the inner product. 
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Exercise 7. (a) Find an orthonormal basis for the space P 2 consisting of all poly­
nomials P(x) = a + bx + cx 2, where a, b, c are scalars, and (P, Q) = J~I P(X)Q(x) dx 
for P, Q in P 2 . 

(b) Expand the polynomial x 2 in the form: 

x2 = tlBI + t2B2 + tJBJ' 

where BI, B2 , B3 is the orthonormal basis you have chosen. 
(c) Verify the formula (6) in this case, i.e., show that 

(x2, x 2) = t~ + t~ + t~ 
by direct calculation. 



CHAPTER 6.2 

Orthogonal Decomposition of a 
Vector Space 

Let n be a plane through the origin in ~3, and let L be the line through 
the origin that is orthogonal to n. Then every vector X in ~3 can be 
expressed in the form 

x = u + V, (11) 

where U E n and VEL. 
Now, let V be a vector space with an inner product ( , ) and let n be a 

subspace of V. We should like to have a generalization of formula (11) to 
this situation. 

We say that a vector Z in V is perpendicular to n if Z 1. B for each Bin 
n, and we denote by n 1- the set of all vectors in V that are perpendicular 
to n. So n 1- is a replacement for the line L above. The generalization of 
(11) that we seek is the formula 

x = X + Z, (12) 

where X is a given vector in V. X is a vector in n, and Z is a vector in 
n1-. 

Exercise 1. Show that n1- is a subspace of V. 

Let Xl' ... , X, be an orthonormal basis of n. 

Exercise 2. Let X be a vector in V and put 

I 

Z = X - L (X, X;)Xj • 

i=l 

Show that Z belongs to n1-. 

Fix X E V. Put X = Il=l (X, X;)X i . Then X E n. Also, by Exercise 2, 
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L 

v 

o 

Figure 6.1 

x 

Figure 6.2 

Z E II 1.. Finally, 
I 

X = L (X, X;)X; + Z = X + Z. 
;=1 

So we have the desired formula (12). Since (12) holds for each vector X in 
V, we regard (12) as giving an orthogonal decomposition of the whole space 
V into a sum of the two mutually orthogonal subspaces II and II 1.. 

Now consider an arbitrary vector A in II. Then 
I 

A = L (A, X;)X;, 
i=1 

and so 
I 

X - A = L [(X, Xi) - (A, X;)]X; + Z. 
;=1 
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Exercise 3. (a) Using the fact that Z = X - X, show that 

I 

IX - AI2 = I I(X, X;l - (A, X;W + IX - X12. 
i=l 

(b) Deduce that IX - AI > IX - XI unless A = X. 
(c) Conclude that X is the vector in 11 closest to X. 

Exercise 4. Let 11 be a subspace of V and let X be a vector in V. Let X* be the 
vector in 11 that is closest to X. Show that X - X* is perpendicular to 11. 

Exercise 5. Let X be a vector in V. Show that the representation of X given in (12) 
is unique, in the sense that if 

X=X'+Z' and X=X"+Z", 

where X' and X" belong to 11, and Z' and Z" belong to 11\ then X' = X" and 
Z'=Z". 

Exercise 6. We use the preceding notation. Define a transformation P of the 
vector space V to itself by putting 

I 

P(X) = L (X, X;)Xj 
i=l 

for each X in V. Show that the following are true: 

(a) P is a linear transformation of V. 
(b) p 2 = P. 
(c) For all X, Y in V, we have (PX, Y) = (X, PY). 
(d) The range of P (i.e., the set of all values taken on by P) equals the sub­

space 11. 

P is called the orthogonal projection of V on 11. 



CHAPTER 7.0 

Symmetric Matrices in n Dimensions 

In the cases of dimensions 2 and 3, we have seen that a special role is 
played by symmetric matrices, those matrices that are equal to their own 
transposes. The same definition works in IRn for n ~ 4, and as in the case 
of lower dimensions, these matrices have special properties that make 
them particularly valuable in the analysis of quadratic forms. 

Recall that the transpose of an n x n matrix m with entry aij in the ith 
row and jth column is the matrix m* with aG = aji. Thus, the matrix m* is 
obtained by reflecting the entries of m across its diagonal. A matrix is 
symmetric if it is equal to its own transpose, so m* = m, or, equivalently, 
aij = aji for all i, j. We shall write (X, Y) for X· Y if X, Y E IRn. 

A linear transformation T of IRn is said to be self-adjoint if for all 
vectors X and Y the inner product of X with TY is the same as the inner 
product of TX with Y. The matrix of a self-adjoint transformation (with 
respect to the standard basis) is symmetric. This is so because the jth 
column of the matrix m(T) of T is given by T(Ej), so (TEj, E) = aij' and 
<Ej , TEi) = aji . Since T is self-adjoint, these are equal. 

Exercise 1. Show, conversely, that if T is a linear transformation of IR" with a 
symmetric matrix, then T is self-adjoint. 

In three dimensions, we proved an important result about the eigen­
vectors of a self-adjoint linear transformation, the fact that eigenvectors 
corresponding to distinct eigenvalues are perpendicular. That proof did 
not use coordinates, and it works just as well in n-dimensional space: If 
TX = tX and TY = sY, where s #- t, then 

t(X, Y) = <tX, Y) = (TX, Y) = (X, TY) = (X, sY) = s(X, Y). 

But, since s #- t, this can only happen when (X, Y) = o. 
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In three dimensions, we used the fact that every linear transformation T 
has a real eigenvalue to obtain an orthonormal basis for 1R3 consisting of 
eigenvectors of T, (Spectral Theorem in 1R3 in Chapter 3.7). As we have 
seen, however, not every linear transformation of 1R4 has a real eigenvalue. 

Nonetheless, we shall show that every self-adjoint linear transformation 
T of 1R4 does have a real eigenvalue, and, moreover, that there is an 
orthonormal basis of 1R4 that consists of eigenvectors of T. 

To prove all this, we shall use a device frequently used in mathematics 
when one wishes to construct a certain mathematical object: assume that 
we have the object already, find out what properties it will have and use 
those properties in our construction. Let us then consider a linear trans­
formation T of 1R4 that possesses eigenvectors Xj with TXj = AjXj, i = 1, 2, 
3, 4, where the Aj are real scalars and the set Xl' ... , X4 is an orthonormal 
basis of 1R4. We define the function Q(X) on 1R4 by 

Q(X) = (TX, X) 

for each X in 1R4. Since the Xj form an orthonormal basis of 1R4, we have 
4 4 

X = L (X, Xj)Xj and IXI2 = L (X, Xj)2 
i=l i=l 

for each X in 1R4, and so TX = Lf=lAj(X, Xi)XI and 

Q(X) = (~ (X, Xj)AjXjo j~ (X, X)x) = j~ Aj(X, Xj)2. (1) 

By suitable labeling of the eigenvectors, we can assure that Al is the 
largest of the 4 eigenvalues, then, by (1) we have 

4 

Q(X) ~ L (X, XY Al = A.IIXI2. (2) 
1=1 

We denote by r the "unit sphere" in 1R4 consisting of all vectors X with 
IXI = 1. By (2), Q(X) ~ ,1.1 for all X in r. Also, Q(Xd = (TX1' Xl) = 
(A.IX1' Xl) = A.1(X1, Xl) = ,1.1' Thus, we have Q(X) ~ Q(X1) for all X in 
r. So we have found: the function Q(X) attains its maximum value on the 
unit sphere r at the vector Xl' 

Let us now turn this argument around: we consider a self-adjoint linear 
transformation T on 1R4. We form the function Q(X) = (TX, X) defined 
for all X in 1R4. 

It can be shown that every continuous function defined on a sphere in 
1R4 takes its maximum value at some point of the sphere. Let Z be a 
vector in r where Q(X) takes on its maximum value on r, that is, such 
that Q(X) ~ Q(Z) for all X in r. .' 

Choose a unit vector Y perpendicular to Z. Then, for each tP In IR, 
cos(tP)Z + sin(tP)Y is also a unit vector. 

We define a function f(tP) by 

f(tP) = Q(cos(tP)Z + sin(tP)Y). 
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Since Q(X) takes on its maximum value on r at Z, f(~) takes on its 
maximum value when ~ = O. Now, 

f(</1) = (T(cos(</1)Z + sin(</1)Y), cos(</1)Z + sin(</1)Y) 
= cos2 (</1)(TZ, Z) + cos(</1) sin(</1) [( TZ, Y) + (Z, T(Y»] 

+ sin2 (</1)(TY, Y). 

Hence, 

/,(</1) = -2 cos(</1) sin(</1)(TZ, Z) + (cos2 (</1) - sin2 (</1» [(TZ, Y) 
+ (Z, TY)] + 2 cos(</1) sin(</1) (TY, Y). 

Since f(</1) takes on its maximum value at ~ = 0, we have /,(0) = O. It 
follows that (TZ, Y) + (Z, TY) = O. 

Since T is self-adjoint, <Z, TY) = <TZ, Y), so 2<TZ, Y) = 0, and so 
(TZ, Y) = O. We have shown that every- vector Y perpendicular to Z is 
also perpendicular to TZ. This can only happen if TZ is a scalar multiple 
of Z (prove this!), and so Z is an eigenvector of T. Thus, we have found: if 
Q(X) = (TX, X) takes its maximum value on r at Z, then Z is an 
eigenvector of T. 

Moreover, we have shown that the hyperplane consisting of all vectors 
Y perpendicular to Z is mapped into itself by T. 

Next, let V be an n-dimensional vector space with an inner product 
<, ) and let T be a self-adjoint linear transformation on V. We form, as 
before, the function Q(X) = < TX, X) defined for all X in V, and we choose 
a point Z on the unit sphere r of V, such that Q(X) assumes at X = Zits 
maximum value on r. By exactly the same argument we used above in ~4, 
Z is an eigenvector of T and, furthermore, if V' denotes the subspace of V 
consisting of all vectors in V that are perpendicular to Z, then T maps V' 
into itself. The restriction of T to V' is then a self-adjoint linear transfor­
mation on V'. If we apply the preceding argument to this transformation 
on V', we obtain an eigenvector X' of T in V', with IX'I = 1, and further, 
T maps the subspace of V' consisting of all vectors perpendicular to X' 
into itself. Also, since X' E V', X' is perpendicular to X. Continuing in this 
way, we obtain a succession of subspaces V, V', V", ... , each contained in 
the preceding one and of dimension 1 less than it, and a succession of 
mutually orthogonal unit eigenvectors of T, Z, X', X", ... , such that Z E V, 
X' E V', X" E V", and so. This succession must stop after n steps, when 
we have reached a subspace of dimension 1. In this way, we obtain n 
mutually perpendicular unit eigenvectors of T in V. We have proved the 
following: 

Theorem 7.1 (Spectral Theorem in Dimension n). Let V be an n-dimensional 
vector space with an inner product <, ), and let T be a self-adjoint linear 
transformation on V. Then, there exists an orthonormal basis of V that 
consists of n eigenvectors of T. 
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The characteristic equation. Recall that we found the eigenvalues of a 
symmetric matrix in 2 and 3 dimensions by solving a certain polynomial 
equation, called the characteristic equation. The situation is similar in IRn 
for n ~ 4. 

Let T be a self-adjoint linear transformation of IRn with symmetric 
matrix m = ((aij))' If ..1. is an eigenvalue of T, then there is a corresponding 
vector X i= 0 in IRn with TX = ..1.X or (T - U)X = O. Expressed in terms of 
coordinates, this becomes, if X = (x 1, ... , x n), 

n 

L aijXj - ..1.Xi = 0, j = 1, 2, .... , n, or 
j~l 

(all - ..1.)XI + a12x2 + ... + alnxn = 0, 

a2l x I + (a22 - ..1.)X2 + ... + a2nxn = 0, (3) 

Thus, the homogeneous system (3) has a non-zero solution, and so, the 
determinant of the corresponding matrix is 0, that is, we have 

all -..1. all a ln 

all all -..1. a ln 
=0. (4) 

ani a n2 ann -..1. 

Each of the steps of this argument is reversible, and so, if (4) holds for a 
given number ..1., then there exists a non-zero vector X such that TX = ..1.X. 

The equation (4), thus, is a necessary and sufficient condition on a 
number ..1. in order that ..1. is an eigenvalue of T. 

If we expand out the determinant, we see that (4) can be written in the 
form 

where B1 , Bl , ••• , Bn are certain constants. Finding the eigenvalues of T 
then amounts to finding the roots (solutions) of the polynomial equation 
(5) of degree n. Equation (5) or, equivalently, equation (4), is called the 
characteristic equation of the transformation T. 

Eigenvalue problems occur frequently in applications of linear algebra 
in science, engineering, statistics, economics, etc. For this reason, computer 
programs have been written to solve the characteristic equation (5) or to 
find alternative ways of calculating the eigenvalues of a given n x n 
matrix. 

Let us compute the eigenvalues in a simple example to illustrate the 
preceding theory. 
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EXAMPLE 1. Let T be the transformation of 1R4 with matrix 

The characteristic equation here is 

6-,1. 2 0 0 

2 3-,1. 0 0 

0 0 5-,1. 5 
= 0, 

0 0 

3 - A 0 

(6 - A) 0 5 - A 
o 5 

o 
5 

5-,1. 

5 5-,1. 

2 0 
-205-,1. 

o 5 

or 

o 
5 

5-,1. 
= 0, or 

(6 - ,1.)(3 - ,1.)[(5 - ,1.)2 - 25] - 2,2[(5 - ,1.)2 - 25] = 0, or 

(,1.2 - 9,1. + 14)(,1.2 - 10,1.) = 0, or 

(A - 7)(,1. - 2),1.(,1. - 10) = O. 

267 

The roots are 7, 2, 0, 10, so these are the eigenvalues. Let us find an 
eigenvector with eigenvalue 7, that is, find X = (Xl' ... , x4 ) with TX = 7X. 
Then, 

so 

[~ ~ ~ ~] [::] = 7[::] o 0 5 5 X3 X3 ' 

o 0 5 5 X 4 X 4 

6x I + 2X2 = 7XI 

2XI + 3x2 = 7X2 

5X3 + 5X4 = 7X3' 

5X3 + 5x4 = 7X4 

-Xl + 2X2 = 0 

2XI - 4X2 = 0 

-2X3 + 5x4 = 0 
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Hence, 

So X = (2, 1,0,0) is an eigenvector with eigenvalue 7. The other eigen­
vectors with eigenvector 7 are scalar multiples of X. (Why?) 

Exercise 1. Find the eigenvectors of the transformation T of example 1 corre­
sponding to eigenvalues 2, 0 and 10. 

Exercise 2. Find all the eigenvalues and eigenvectors for the linear transformation 
of IR with matrix 

Hint: Recall the transformation Q in Chapter 4.1, and reason geometrically. 



CHAPTER 7.1 

Quadratic Forms in n Variables 

In Chapter 3.8 we considered a quadric surface in 1R3 with the equation 

ax2 + 2bxy + 2cxz + dy2 + 2eyz + fZ2 = 1, (1) 

where a, b, c, d, e, f are constants. 
If we denote by Q(x, y, z) the polynomial ax2 + 2bxy + 2cxz + dy2 + 

2eyz + f Z 2, in the variables x, y, z, then equation (1) becomes: Q(x, y, z) = 
1. 

We proved Theorem 3.12, which told us that we may choose new 
coordinates u, v, w in 1R3 in such a way that if we express Q(x, y, z) in 
terms of these new coordinates, we have the formula 

(2) 

where t 1, t 2, t3 are constants. It follows that when expressed in the new 
coordinates, our surface has the simple equation: 

(3) 

From equation (3), if t 1, t 2, and t3 are not equal to zero, it is easy to tell 
whether the surface is an ellipsoid (possibly a sphere) or a hyperboloid. 

We shall now study the corresponding situation in n variables. We 
consider a homogeneous second-degree polynomial in the n variables Xl' 

n 

Q(x1, ••• , X n) = L aijxix}, 
i,j=l 

where the aij are constants and aij = aji for each i, j. Writing this out, and 
combining terms aijxixj and ajixjxi, we get 

Q(x1 , .. ·, xn) = a11 x f + 2a12xlx2 + ... + 2alnXlXn 

+ a22x~ + 2a23x2x3 + ... + 2a2nX2Xn + ... + annx;. 
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Our problem is to choose new coordinates u I' ... , Un in IRn such that 
expressed in the new coordinates 

(4) 

Such polynomials Q(XI"'" xn) often occur in problems in geometry, 
statistics, mechanics, advanced calculus, etc., and formula (4) greatly sim­
plifies dealing with them. 

To obtain formula (4), we shall use the Spectral Theorem we proved in 
Chapter 7.0. Let m denote the symmetric matrix with entries ajj' and let A 
be the linear transformation of IRn whose matrix is m. If X is the column 
vector (x I' ... , x n ), then 

[

all all 

AX = a~l an 

anI an2 

... a ln
] [Xl] ... a2n X2 

. , 

ann Xn 

and so, X' AX = L7=1 Xj(Li=1 aijxj) = Lj,j aijXjXj = Q(x l , .••• , xn)· 
Since A has a symmetric matrix, and so is self-adjoint, the Spectral 

Theorem applies to A and there exists an orthonormal basis G I , G 2 , ••• , 

Gn of IRn with AGj = tjGj, j = 1, ... , n, where the tj are the eigenvalues of 
A. Then if X is a vector in IRn, we have X = L7=1 ujGj, where u1, ... , Un 
are the coordinates of the vector X in the coordinate system whose axes 
lie along the basis vectors G I , ... , Gn• Then 

X·AX = (t UjGj)·(t ujtjGj) = t ufth j=l j=1 j=1 

so Q(x l , ... , xn) = L7=1 tjuf, Thus, we have the following: 

Theorem 7.2. Let Q be a quadratic polynomial in n variables given by 
Q(x I' ... , Xn) = L7,j=1 aijxjxj' where the aij are constants such that ajj = ajj. 
Then there exists a coordinate system with coordinates denoted U1' ... , Un 
such that for every vector (Xl' ... , xn) we have 

n 

Q(X1' ... , xn) = L tjuf, (5) 
j=1 

where (U1' ... , un) are the new coordinates of (Xl' ... , xn) and t1, ... , tn are 
fixed scalars depending upon Q. The new coordinate axes, (uraxes), lie 
along the eigenvectors of the linear transformation A whose matrix is «aij»' 

Note: A homogeneous polynomial, each of whose terms is of the second 
degree, is called a quadratic form. Theorem 7.2 tells us that an arbitrary 
quadratic form in n variables can be written as a diagonal quadratic form: 
L7=1 tjuf in suitable coordinates Uj. 



7.1 Quadratic Forms in n Variables 271 

EXAMPLE 1. Let Q(XI' X2, X3, X4) = X 1 X2 + 2X3X4' We wish to write Q as a 
diagonal quadratic form in new coordinates UI, ... , U4 · First, we have to 
write Q in the form Li'.i=l aijxixj with au = aji, and then we must form the 
matrix m = ((au))' 

So, 

XIX2 + 2X3X4 = Oxi + tX 1X2 + OX1 X3 + OXIX4 + 
tX2XI + Ox~ + OX2X3 + OX2 X 4 + 
OX3XI + OX3X2 + Ox~ + 1x3x4 + 
OX4 XI + OX4X2 + 1x4x3 + Oxi· 

H ~J. 
010 

The eigenvalues of m are the roots of the characteristic equation 

-A- t 0 0 
1 -A- 0 0 2 =0. 
0 0 -A- I 
0 0 1 -A-

(6) 

Evaluating the determinant, as we did in Chapter 4, we see that equation 
(6) is equivalent to 

So the eigenvalues ti are: t, -t, 1, -1. If we choose the ui-axes along the 
corresponding eigenvectors, we obtain from Theorem 7.2 that, 

X 1 X2 + 2X3X4 = tui - tu~ + u~ - ui· 

Exercise 1. Find the corresponding eigenvectors in Example 1, and calculate the 
change of coordinate formulas that express U l , U2, U3• U4 in terms of Xl. X2. X3. X4' 

The diagonalization of a symmetric n x n matrix. If m is a given matrix 
and if we can find a diagonal matrix d and an invertible matrix r, such 
that 

m = r dr-I, 

then we say that we have diagonalized the matrix m. In Chapter 3.7, we 
showed how we may diagonalize a symmetric 3 x 3 matrix, and we shall 
now solve the corresponding problem for an arbitrary symmetric n x n 
matrix. As in the preceding result about quadratic forms, the Spectral 
Theorem plays a key role in our solution. 
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If b = «bij)) is any n x n matrix and X = (Xl' ... , xn) is a vector in IRn, 
we write: bX for the vector Y = (y I' ... , Yn), which is the result of b acting 
on X. This means that 

n 

Yi = L bijxj' i = 1, ... , n. 
j=l 

If Ek denotes the vector in IRn whose kth entry is 1 and whose other 
entries are 0, then bEk is the kth column vector of b. 

An n x n matrix b is called an orthogonal matrix, just as in the case 
n = 3 we discussed in Chapter 3.6, if b- l = b*, that is, if the inverse of b 
equals the transpose of b. 

Let m be a symmetric n x n matrix, and denote by A, the linear 
transformation of IRn whose matrix in m. By the Spectral Theorem, there 
exists an orthonormal basis Xl' "., Xn of IRn consisting of eigenvectors of 
A. Then mXi = tiXi' where t I, ... , tn are the eigenvalues of A. Let p be the 
matrix (X 1 IX2 1'''IXn), whose columns are the eigenvectors Xi' Since Xl' 
... , Xn is a basis of IRn, p has an inverse p-l. We define by d the diagonal 
matrix with entries down its diagonal given by the eigenvalues ti: 

d = [~~ ~]. 
o 0 tn 

We want to show that the matrices m and p dp-l are equal. Fix i. We 
have pEi = Xi' so Ei = p-l Xi' Also, dEi = tiEi. So (p dp-l )Xi = p(dp-l X;) 
= p(tiE;) = tiPEi = tiXi' Also, mXi = tiXi' Thus, the result of applying 
p dp-l and m to Xi is the same for each i. Since the Xi forms a basis for 
IRn, it follows that (p dp-I)X = mX for every vector X in IRn. We conclude 
that m = pdp-I. Thus, we have proved the following. 

Theorem 7.3. Let m be an n x n symmetric matrix. If we define the 
matrices p and d as above, we obtain 

m = pdp-I. (7) 

When n = 3, we had proved this result as Theorem 3.11 in Chapter 3.7. 
As in Corollary 1 of Theorem 3.11, we can show that the matrix p in (7) is 
an orthogonal matrix. 

PROOF. Since the columns of p are the vectors Xi' the rows of the 
transpose p* are the vectors Xi' so that 
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and, hence, the product matrix n [X.x. Xl ,X2 x.x,] 
p*p = ~2 (Xl!,.,!Xn) = X2;Xl 

X2'X2 X2'Xn 

Xn Xn,Xl Xn,X2 Xn'Xn 

[i 
0 

:] 0 

So p*p is the identity matrix and, hence, p-l = p*, and so p is an 
orthogonal matrix, as we set out to prove, 

Exercise 2. Express in the form (7) the matrix m that occurs in Example 1. 

Exercise 3. Express in the form (7) the 4 x 4 matrix 

Exercise 4. Write, as in (5), the quadratic form 

xi + 2X 1X 2 + 2X 1X 3 + 2X1X4 + x~ + 2X2X 3 + 2X2X4 + x~ + 2X3X4 + xi, 

Exercise 4. Express, as in (5), the quadratic form 



CHAPTER 8.0 

Differential Systems 

In this chapter we present examples from one of the most important 
applications of linear algebra, to systems of differential equations. We 
have seen how the use of matrices makes it possible for us to handle 
systems of k equations in n unknowns, and to interpret these as repre­
senting linear transformations between spaces. We now see how the use of 
linear algebra makes it possible to approach systems of equations involv­
ing derivatives of functions. For this chapter, a knowledge of calculus of 
one variable is assumed. 

Our first examples lead to systems of two differential equations, and the 
mathematics involved in the analysis of such systems is already contained 
in Chapter 2. In §3 of this chapter, we show how the techniques we 
used in two dimensions can be combined with the linear algebra of three 
and more dimensions to give a general theory of differential systems of 
higher order. 

EXAMPLE 1. We are given two tanks of capacity 100 gallons, each filled with 
a mixture of salt and water. The tanks are connected by pipes as shown in 
Fig. 8.1 and at all times the mixture in each tank is kept uniform by 
stirring. 

The mixture from tank I flows into tank II through a pipe at 10 gal/min, 
and in the reverse direction, the mixture flows into tank I from tank II 
through a second pipe at 5 gal/min. Also, the mixture leaves tank II 
through a third pipe at 5 gal/min, while fresh water flows into tank I 
through another pipe at 5 gal/min. 

Denote by x(t) the amount of salt (in lbs) in tank I at time t, and by y(t) 
the corresponding amount in tank II. Suppose, at time t = 0, there are Xo 
lbs of salt in tank I, and 0 lbs of salt in tank II. Find expressions for x(t) 

and y(t) in terms of t. 



8.0 Differential Systems 275 

J 
5 I ~ 

-5-

1 I I II 
-10-

~ 
5 

Figure 8.1 

Consider the time interval from time 1 to time 1 + 1::.1. During that time 
interval, each gallon flowing into tank I from tank II contains y(t)/ 100 Ibs 
of salt, while each gallon flowing from tank I to tank II contains x(I)/100 
lbs of salt. Hence, the net change of the amount of salt in tank I during the 
time interval is 

5 Y (1)1::.1 lOx (1)1::.1 
I::.x = 100 - 100 ' 

while the corresponding change for tank II is 

lOx (t)1::.1 lOy (1)1::.1 
I::.y = 100 - 100 

Dividing both equations by 1::.1 and letting 1::.1 ~ 0, we get 

ldX 5 10 
di(t)= 100 y (t)- 100X(I), 

dy 10 10 
dt (1) = 100 x(t) - 100 y(t). 

(I) 

In addition, we know that 

x(O) = Xo, yeO) = O. (2) 

The functions 1 ~ X(I), 1 ~ y(l) must be determined from conditions (I) 
and (2). 

A system of equations involving two unknown functions x and y which 



276 Linear Algebra Through Geometry 

has the form 

{ 
dx = ax + bv 
dt ./' 

dy = ex + dv 
dt :J" 

where a, b, c, d are given constants, is called a differential system. 

(3) 

Thus (1) is a differential system with a = - igo' b = I~O' 
d = - I~' The condition 

c = l.!L 
100 ' 

yeO) = Yo, 

where Xo, Yo are given constants, is called an initial condition for the system 
(3). Thus (2) is an initial condition. 

We shall use the notion of a vector-valued function of t. A vector-valued 

function X(t) assigns to each number t a vector X(t) = ( X I (t) ). Thus, 
x 2( t) 

XU) = ( t 2 
) and X(t) = (C?st) 

t3 + I sm t 

are vector-valued functions. If X(t) = (X l ( t»), then t ~ x1(t) and t ~ xit) 
x 2( t) 

are scalar-valued functions. We define the derivative of the function 

t~X(t) =(XIU») by 
x 2( t) 

dX = (dXI/ dt). 
dt dX2/ dt 

Thus, if X(t) =( t2 ), then dX/dt =( 2t2), while if X(t) =(C?st), then 
t3 +1 3t smt 

dX/ dt = ( - sin t). Note that dX/ dt is again a vector-valued function. 
cost 

Exercise 1. Fix a vector Y. Define a vector-valued function t ~ Y(t) by setting 
yet) = tny. Show that 

Now let the scalar-valued functions t ~ x(t), t ~ yet) be a solution of the 
differential system (3). In vector form, we can write 

( dx / dt) = (ax + bY). (4) 
dy/dt ex + dy 

We define the vector-valued function t ~ X( t) by X( t) = ( : ~:~ ). Then the 
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left-hand side of (4) is dX/ dt, and the right-hand side of (4) is 

(:: X) = (: !)(;) = (: !)(X(t». 
Thus (4) may be written in the form 

dX = (a b)X(t). (5) 
dt c d 

How shall we solve Eq. (5) for X( t)1 Recall that letting a matrix (~ !) 
act on a vector X to give the vector (~ !)X is analogous to multiplying a 

number x by a scalar a to give the number ax. So Eq. (5) is analogous to 
the equation 

dx = ax 
dt ' 

(6) 

where x is now a scalar-valued function of t and a is a given scalar. We 
know how 'to solve Eq. (6). The solutions have the form 

x(t) = Ce OI, 

where C is a constant. Setting t = 0, we get x(O) = C, so 

x(t) = x(O)e OI = eIO(x(O», 

where we have changed the order of multiplication with malice afore­
thought. Let us look for a solution to Eq. (5) by looking for an analogue of 
eIO(x(O». We take 

X( t) = elm (X(O», with m = (~ !). (7) 

First we must define the exponential of a matrix. In § I we shall define, 
given a matrix m, a matrix to be denoted em or exp(m) and to be called the 
exponential of m. 

Applying the matrix e 1m to a fixed vector X(O), we then obtain a vector 
for each t, and thus we get the vector-valued function t ~ X(t) defined in 
(7). We shall then show that X(t) solves (5). 

In what follows we shall use the symbol I for the matrix (~ ~), which is 

properly denoted m(l). This simplifies the formulas, and should cause no 
confusion. 

§ 1. The Exponential of a Matrix 

Let m = (~ ~) be a matrix. Since we have defined addition and multipli­

cation of matrices, we can write expressions such as m2 or m3 - 3m + I. 
We interpret m3 - 3m + I as the result of applying the polynomial 
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P(x) = X 3 - 3x + 1 to the matrix m: 

P(m) = m3 - 3m + I. 
More generally, if Q(x) is the polynomial 

Q(x) = cnx n + cn_lx n- 1 + ... + c,x + Co' 

where Cn , Cn _" ••• , C" Co are scalars, we set 

Q(m) = cnm n + cn_lm n- 1 + ... + c,m + col, 

and we regard Q(m) as the matrix obtained by applying the polynomial Q to 
the matrix m. 

We now replace the polynomial Q by the exponential function exp(x). We 
know that exp(x) is given by an infinite series 

x 2 xn exp(x) = I + x + - + ... + - + . . . (8) 2! . n! ' 

where the series converges for every number x. We wish to apply the 
function exp(x) to the matrix m. We define 

m 2 mn 
exp(m) = 1+ m + -2' + ... + -, +.... (9) 

. n. 
An infinite series is understood as a limit. Thus, Eq. (8) means that the 

sequence of numbers 

x 2 x 2 xn 
I, I + x, I + x + 2! , ... , I + x + 2! + ... + n! , ... 

converges to the limit exp(x) as n ~ 00. Similarly, we interpret Eq. (9) to 
say that exp(m) is defined as the limit of the sequence of matrices 

m 2 m2 mn 
1,1 + m,1 + m + 2f"'" 1+ m + 2f + ... + liT"" 

Of course, exp(m) is then itself a matrix. 

EXAMPLE 2. Let m be the diagonal matrix 

m = (s 0) o t' 

where s, t are scalar. What is exp(m)? Recall the formula for (~ ~)n 
found in Chapter 2.7. 

m2 mn 
l+m+-+"'+-2! n! 

= (~ ~) + (~ 0) + 2- (s2 0) 1 (S3 0) 1 en 0) 
(2 + 3! 0 + ... +-

( 2! 0 (3 n! 0 (n 

= (~ ~) + (~ ~) + (s2 ~2! 
(2 ~2!) 
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+ (S3/3! 0)+ ... + (sn/n! 0) 
o 13/3! 0 In/n! 

=(1 +S+S2/2!+S3/03!+'" +Sn/n! 0 ) 
1+1+/2/2!+/ 3/3!+ ... +In/n! . 

Letting n -; 00, we find that 

( m2 mn) 
exp(m) = lim 1 + m + -2' + ... +-, 

n~oo . n. 

[
lim(l+s+ ... +sn/n!) 0 1 res 0] 

= . n-> 00 0 )~ (I + 1 + . . . + 1 n / n!) = 0 e I • 

Thus, 

EXAMPLE 3. Find exp[ (~ b)]' 

(~ bf = (~ b)(~ b) = (~ ~). 
Hence, (~ b)n = 0 for n = 2,3, .... So 

Let A be a linear transformation. We define exp(A) as the linear 
transformation whose matrix is exp[m(A)]. 

EXAMPLE 4. Let R71 / 2 be rotation by 7T /2. Find exp(R71 / 2). 

Setm=m(R )=(0 -I). 
71/2 1 0 

m 2 = (~ -0 I )( ~ -0 1) = (-~/ ~ I) = (- 1 )/. 

Hence, for every positive integer k, 

m2k = ( _1)/)k= (_I)klk = (_I)kl, 

and so 

So 

m3 = (-I)m, m 6 = (-1)1, m7 = (-I)m, 

and so on. Hence, 
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exp( m) = 1 + m + 2\ (- 1)1 + 3\ (- I)m + 1, 1 . . 4. 
1 1 1 

+ 5! m + 6! (- 1)1 + 7! (- I)m + ... 

= (I - 2\ + 4\ - 6\ + ... )1 + (I -1- + 1- - 1- + ... )m. . .. 3! 5! 7! 

We can simplify this formula by recalling that 

and 

so 

and 

So 

X2 X4 X6 
COSX = 1- - + - - - + ... 

2! 4! 6! ' 

. X3 X5 X7 
SInX=X--+---+ •.. 

3! 5! 7! 

cosl=I-1-+1--1-+ ... 
2! 4! 6! ' 

sin I = 1 - 1- + 1- - 1- + ... 
3! 5! 7! 

exp(m) = (cos 1)1 + (sin I)m = (cos 1)(~ ~) + (sin I)(~ - 6) 
= (cos I 

sin 1 
- sin I). 
cos 1 

So exp( R" /2) is the linear transformation whose matrix is 

( COS 1 
sin 1 

- sin I). 
cos 1 

Exercise 2. Fix a scalar t and consider the matrix (~ "(/). Show that 

- t)] = (C?st - sint). o smt cost 

Exercise 3. Set m = CD· 
(i) Calculate m k for k = 2,3,4, .... 

(ii) Calculate exp(m) and simplify. 

Exercise 4. Set m = ( ~ ~ ). 

(10) 
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(i) Calculate m k for k = 2,3,4, .... 
(ii) Calculate exp(m) and simplify. 

281 

In Chapter 2.7, we considered a linear transformation A having eigenval­

ues t l, t~ with t l*t2 and eigenvectors XI =(;:) and X2=(;~)' We 

defined linear transformations P and D with 

m( P) = (XI X 2 ), 

YI Y2 
m(D)=(tol 0) 

t2 ' 

and we showed, in formula (5) of Chapter 2.7, that 

( tn 0) 
(m(A»)n= m(P) ~ t2 m(p- I), n=I,2,3, ... 

It follows that 

exp(m(A») = 1+ meA) + 1! (m(A))2+ ... 

=I+m(P) I m(p-I)+_- I m(p-I)+ ... ( to) m ( P) (t2 0 ) 
o t2 2! 0 Ii 

=m(p)[I+(tl O)+J...(t~ 0)+ ... ]m(p- I) o t 2! 0 t 2 
2 2 

(where we have used that m(P) . m(P -I) = I) 

[ 1+tl+(1/2!)t~+... 0 1 
= m(P) m(p-I) 

o l+t2 +(1/2!)ti+ ... 

=m(p)(e tl O)m(p- I). 
o e l2 

Thus, we have shown: 

Theorem 8.1. 

exp(m(A») = m(p)( e~1 

EXAMPLE 5. Calculate exp [ (! _\) l 
Here 

t2 = - 5, x = (2) 
I I' 

(II) 
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So 

m(P) = (~ - 1) 
2 ' 

m(p-I)=( 2/5 1/5). 
- 1/5 2/5 

By (11), we have 

exp[(! -\)]=(i 
= (i 

-21)(eo5 0)( 2/5 1/5) 
e- 5 - 1/5 2/5 

- 1)( (2/5 )e5 

2 - (1/5 )e- 5 

= ( (4/5 )e5 + (1/5 )e- 5 

(2/5 )e5 - (2/5 )e- 5 

EXAMPLE 6. Calculate exp [ (6 ~) J. 

(1/5 )e5 ) 

(2/5 )e- 5 

(2/5 )e5 - (2/5 )e- 5 ) 

(1/5 )e5 + (4/5 )e- 5 • 

Since 11 ~ t ~ tl = t 2 - t = t(t - I), the eigenvalues are tl = I, t2 = O. 

The corresponding eigenvectors are XI = (6)' X 2 = (~). So m(P) = 

(6 ~) = I, and then m(P -I) = I. Hence, by (11), 

exp [ (6 ~)] = I(~ ~)I = (~ ~). 

Exercise 5. 

(a) Compute (6 ~)n for n = 1,2,3, .... 

(b) Compute exp [ (6 ~)] directly from the definition and compare your answer 

with the result of Example 6. 

Exercise 6. Using Theorem 8.1 calculate exp [ G ~ 1) J 
Exercise 7. Calculate exp[ (~ ~) l 
Exercise 8. Calculate exp [ (: i) l 

Recall Eq. (5): dX/ dt = m(X(t)), where m = (~ ~). We fix a vector X 

and define X(t) = exp(tm)(Xo)' In §2, we shall show that X(t) solves (5) and 
satisfies the initial condition X(O) = Xo, and we shall study examples and 
applications. 
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§2. Solutions of Differential Systems 

We fix a matrix m and a vector XO' 

so 

t 2 2 t 3 3 X (exp(tm»(Xo) = Xo + tm(Xo) + 2! m (Xo) + 3! m ( 0) + .... 

Both sides of the last equation are vector-valued functions of t. It can be 
shown that the derivative of the sum of the infinite series is obtained by 
differentiating the series term by term. In other words, 

~ {(exp(tm»(Xo)} = ~(tm(xo)) + ~( ~~ m2(Xo») + .. '. (12) 

The right-hand side of (12) is equal to 

m(Xo) + ;f m2(Xo) + 3;!2 m3(Xo) + ~!3 m4(Xo) + ... 

_ 2 X t 2 3 t 3 4 - m(Xo) + tm ( 0) + 2! m (Xo) + 3! m (Xo) + ... 

= m(Xo) + m(tm(Xo» + m( ~~ m2(Xo») + m( ~~ m 3(Xo») + ... 

- {X (X t 2 
2 X t 3 3 } - m 0 + tm 0) + 2! m ( 0) + 3! m (Xo) + ... 

= m {(exp(tm»(Xo)}. 

So (12) gives us 

d 
dt {( exp(tm) )(Xo)} = m { (exp( tm) )(Xo) }. (13) 

We define X(t) = (exp(tm»(Xo». Then (13) states that 

~~ (t) = m(X(t». (14) 

In other words, we have shown that X(t) solves our original equation (5). 
Also, setting t = 0 in the definition of X(t), we find that 

X(O) = I(Xo) = Xo, (15) 

since exp(O) = 1+ 0 + 0 + ... = I. So we have proved: 

Theorem 8.2. Let m be a matrix. Fix a vector Xo. Set X(t) = (exp(tm»(Xo) 
for all t. Then, 

dX = mX(t) 
dt ' (16) 
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and 

X(O) = Xo. 

EXAMPLE 7. Solve the differential system 

{ ~~ = -y, 

dy =x 
dt ' 

with the initial condition: x(O) = 1, y(O) = O. 

In vector form, with X(t) = (x(t»), we have 
y(t) 

dX = (0 - l)(X) 
dt 1 0 

with initial condition X(O) =(~). Set m =(~ -0 1), Xo =(~) and set 

X( I) = exp( 1m )(Xo). 

By Exercise 2 in this chapter, 

exp(tm) = exp [ (~ ~ t)] = (~?:: ~~~~I). 
So 

X(t) = (C?st - sint)( I) = (C?SI). 
smt cost 0 smt 

(17) 

(18) 

Since X(t) = (x(t»), we obtain x(t) = cost, y(t) = sint. Inserting these 
y(t) 

functions in (18), we see that it checks. Also, x(O) = I, y(O) = 0, so the 
initial condition checks also. 

EXAMPLE 8. Solve the differential system (18) with initial condition x(O) 
= xo, y(O) = Yo· 

We take Xo = (;~) and set 

X(t)=(exp[O -t])(X)=(C?st -sint)(xo), 
tOO sm t cos I Yo 

so 

X t = . ( 
(cost)xo - (Sint)yo) 

( ) (sint)xo + (cost)yo 
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So 

x(t) = (cost)xo - (sint)yo, y(t) = (sint)xo + (cost)yo· 

We check that these functions satisfy (18) and that x (0) = xo, yeO) = Yo· 

Exercise 9 Calculate exp[(3t 4t )], where t is a given number. 
. 4t - 3t 

Exercise 10. Using the result of Exercise 9, solve the system 

{ ':t; = 3x + 4y with {x(o) = I}, 

dy = 4x _ 3y yeO) = 0 
dt 

by using Theorem 8.2 with m = (! _;) and Xo = G)-
Exercise 11. Solve the system (19) with x(O) = sI>Y(O) = S2' 

Exercise 12. Solve the system 

{ 
dx = 2x + 4y 
dt 

dy = 4x + 6y 
dt 

. {XCO) = I} 
with . 

yeO) = 0 

(19) 

(20) 

Exercise 13. Solve the system (I) (at the beginning of this chapter) with initial 
condition (2). 

EXAMPLE 9. Consider an electric circuit consisting of a condenser of 
capacitance C connected to a resistance of R ohms and an inductance of L 
henries. A switch is inserted in the circuit (see Fig. 8.2). The condenser is 
charged with a charge of Qo coulombs, with the switch open. At time t = 0, 
the switch is closed and the condenser begins to discharge, causing a 
current to flow in the circuit. Denote by i(t) the current flowing at time t 
and by Q(t) the charge on the condenser at time t. The laws of electricity 
tell us the following: the voltage drop at time t equals (I I C)Q(t) across the 
condenser, while the voltage drop across the resistance is Ri(t) and the 
voltage drop across the inductance is L( di I dt). The sum of all the voltage 
drops equals ° at every time 1 > 0, since the circuit is closed. Thus, we have 

or 

b Q (I) + Ri (t) + L ~~ = ° 

di = __ 1_ Q(I) _ R i(l) 
dl LC L' 

Also, the current at time 1 equals the negative of dQI dt or i(t) = 
- dQI dl. So the two functions: t ~ i(t) and t ~ Q(t) satisfy 
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c 

I iff) 

1--

L 

Figure 8.2 

{ 
di = ai + bQ 
dt ' 

dQ . 
"(j( = -I, 

R 

(21 ) 

where a = - R/ L, b = -1/ LC. So to calculate the current flowing in the 
circuit at any time t, we must solve the differential system (21) with initial 
condition Q(O) = Qo, i(O) = O. 

EXAMPLE 10. Let c l , C2 be two scalars. We wish to solve the second-order 
differential equation 

d 2x + C dx + c x = 0 
dt2 I dt 2 

(22) 

by a function t ~ x(t) defined for all t, and we want to satisfy the initial 
conditions 

x(O) = X o, (23) 

We shall reduce the problem (22) to a first-order differential system of the 
form (3). To this end we define y(t) = (dx/ dt)(t). Then (22) can be written: 
dy/dt + clY + c2x = 0 or 

dy 
dt ;::: -C2X - clY· 

So x and y satisfy the differential system 



8.0 Differential Systems 

EXAMPLE II. We study the equation 

d 2x +x = 0, 
dt2 

x(O) = X o, 

Setting y = dx / dt, (25) turns in to 

~~ (0) = Yo. 

ldX -
dt - y, 

dy =-x 
dt ' 

x(O) = X o' yeO) = Yo' 

Exercise 14. Fix a scalar t. Show that 

exp [ t( ~ I 6)] = C~~~~ t ~~~~). 
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(24) 

(25) 

(26) 

Exercise 15. Using the result of Exercise 14, solve first the equations (26) and then 
Eg. (25). 

In Theorem 8.2, we showed that the problem dX/dt = mX(t), X (0) 
= Xo has X(t) = (exp(tm)(Xo» as a solution for all t. We shall now show 
that this is the only solution, or, in other words, we shall prove uniqueness 
of solutions. 

Suppose X, Yare two solutions. Then dX/ dt = mX(t), X(O) = Xo and 
dY / dt = mY(t), Y(O) = Xo. Set Z(t) = X(t) - Y(t). Our aim is to prove that 
Z(t) = 0 for all t. We have 

dZ = dX _ dY = mX(t) - mY(t) 
dt dt dt 

= m(X(t) - Y(t» = mZ(t). (27) 

Also 

Z(O) = X(O) - YeO) = Xo - Xo = O. (28) 

We now shall use (27) and (28) to show that Z(t) = 0 for all t. We denote 
by f(t) the squared length of Z(t), i.e., 

f(t) = IZ( tWo 

t ~ f(t) is a scalar-valued function. It satisfies 

f(t) ;;. 0 for all t and f(O) = o. 



288 Linear Algebra Through Geometry 

Exercise 16. If A(t), B(t) are two vector-valued functions, then 

!!.(A(t).B(t»=A(t). dB +B(t). dA. 
dt dt dt 

It follows from Exercise 16 that 

dJ = !L (Z(/)' Z(/») = Z(/)' dZ + Z(/)' dZ = 2Z(/)' dZ 
dl dl dl dl dl . 

Using (27), this gives 

f (I) = 2Z(/)' mZ(/). 

We set m =(~ ~). Fix t and set Z(/) = Z =(~~). Then 

2Z(t)· mZ(t) = 2(;~). {(~ ~)(;~)} 

= 2C~)' (~;: : ~;:) 
= 2(az; + bz,Z2 + CZ2Z, + dzi). 

Let K be a constant greater than lal, Ibl, /c1, 14 Then 

12Z(t) . mZ(/)1 .;; 2(lalz; + Ibllz,llz21 + Icllz21lz" + Idllz212) 

.;; 2K(lz,,2 + 21z,llz21 + IZ212). 

Also, 

So 

12Z(t) . mZ(t)1 .;; 2K(2Iz,12 + 21z212) = 4K(lz,,2 + IZ212) 

= 4KIZI2 = 4KJ(t). 

By (29), setting M = 4K, this gives 

f (I) .;; MJ(t). 

Consider the derivative 

!L ( J(I) ) = e MI (dJ / dt) - J(t)Me M(t) = (dJ / dt) - MJ(t) . 
dl eMf e2Mt eMf 

By (30), the numerator of the right-hand term .;; 0 for all t. So 

!L ( J(t) ) .;; 0 
dt eMf ' 

(29) 

(30) 
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so f(t)/e M1 is a decreasing function of t. Also, f(t)/e~t >.0 and = 0 at 
t = O. But a decreasing function of t, defined on t > 0 WhICh IS > 0 for all t 
and = 0 at t = 0, is identically O. 

So f(t)/ eMt = 0 for all t. Thus IZ(tW = f(t) = 0, and so Z(t) = 0, and so 
X(t) = yCt) for all t. 

We have proved: 

Uniqueness Property. The only solution of the problem considered in Theorem 

8.2 is X(t) = (exp(tm»(Xo)' 

§3. Three-Dimensional Differential Systems 

Just as in the case of two-dimensional matrices, we can define polynomials 
in a 3 x 3 (or an n x n) matrix, and we can take a limit to form the 
exponential of a matrix. 

EXAMPLE 12. If m is the 3 x 3 diagonal matrix with diagonal entries a, b, 
e, then m" is the diagonal matrix with diagonal entries a", b", e" and 
exp(m) is the diagonal matrix with diagonal entries exp(a), exp(b), and 
exp(e). 

EXAMPLE 13. If m is a 3 x 3 upper triangular matrix, with 0 on the 
diagonal or below, then m2 has 0 except in the upper-right-hand corner, 
and m3 = O. Thus, exp(m) = I + m + m2/2. 

As in the two-dimensional case, the calculation of polynomials and of 
exponentials of a matrix is greatly simplified if the matrix is diagonalized. 
If A is a linear transformation from 1R3 to 1R3 with three distinct eigen­
values t l , t 2 , t 3 , then A = PDP-l for some invertible matrix P with 
columns given by the eigenvectors corresponding to the eigenvalues which 
are the diagonal entries of the diagonal matrix D. Then, [m(A)]" = 
m(P) [m(D)]"m(p-l) for all positive integers n, so exp(m(A» = 

m(P)m(exp(D»m(p-l ). 
The same method enables us to calculate the exponential of any matrix 

representing a transformation A, such that 1R3 has a basis consisting of 
eigenvectors of A. 

In the case of a vector function X(t) in 1R3, we may solve the differential 
system dX/dt = mX(t) just as we did in the two-dimensional case. If the 
initial condition is X(O) = Xo, then the solution of the system is X(t) = 

(exp(tm»(Xo). The method of proof used in the two-dimensional case can 
be used to show that this solution is unique. 

EXAMPLE 14. The third-order ordinary differential equation x"'(t) + ax"(t) 
+ bx'(t) + ex(t) = 0 can be expressed as a system of three first-order 
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equations by setting y(t) = x'(t) and z(t) = x"(t). The single equation is 
equivalent to the system 

x'(t) = y(t) 

y'(t) = z(t) 

z' (t) = - cx(t) - by(t) - az(t). 

This allows us to solve a third-order differential equation by solving a 
differential system. 



CHAPTER 8.1 

Least Squares Approximation 

We consider two variable quantities x and y. We make n simultaneous 
measurements of both quantities and obtain n pairs of values: Xl' Yl' Xz, 
Yz, ... , Xn> Yn, and we call the corresponding points (xl,yd, ... , (xn,Yn) in 
the xy plane the data points. 

In certain situations, when we plot the data points on a piece of graph 
paper, we discover that they almost lie on a straight line. 

This leads us to expect that there is a relation 

y=ax+b (1) 

between the two quantities, where a and b are certain constants. This 
relation may be exact in theory, but the data points (Xi' yJ fail to lie 
exactly on one straight line because of small errors of measurement. We 
now ask, what is the best choice of a and b to give the correct relation (I)? 

We should choose the line L with equation Y = ax + b in such a way 
that the total "deviation" of the points (Xi' Yi) from L is as small as 
possible. Let us fix a line y = mx + b and let (xj, Zj) be the point on this 
line with X coordinate Xj' so that Zj = mXj + b, j = 1, ... , n. 

Two possible measures of the deviation of the data points from L are 
the sums 

n 

L \Yj - Zj\ and 
j=l 

It turns out that the second expression is easier to deal with. So we define 
the deviation of the data points from the line L by 

n n 

D(m, b) = L \Yj - Zj\2 = L (Yj - (mxj + b))z. (2) 
j=l j=l 
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Figure 8.3 

y 

L 

Figure 8.4 
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We wish to minimize D(m, b), i.e., to find scalars iii, b such that D(iii, b) 
~ D(m, b) for all m, b. The line 

L:y=iiix+b 

then is the line of least deviation for our data points. We may use the line 
L to predict the results of future measurements of the quantities x and y. 

We may interpret the expression D(m, b) geometrically. Let 

Then X, Y, 1 are vectors in IR" and the squared length 

" IY - (mX + blW = L (y; - (mx; + b»2. 
·;=1 

So 

IY - (mX + blW = D(m, b). 

The totality of all vectors mX + bl in IR" with m, b in IR is a 2-dimensional 
subspace of IR", which we denote by ll. The pair of vectors X, 1 is a basis 
ofll. 

If iii, b are the scalars that minimize the deviation D, then the distance 
from Y to iiiX + bl is smaller than the distance from Y to any other point 
mX + bl in ll. So iiiX + bl is the nearest point to Y in n. It follows that 
Y - (iiiX + bl) is perpendicular to ll. In particular, then, we have 

(Y - (iiiX + bl), X) = 0, 

and 

(Y - (iiiX + bl), 1) = O. 

y 

o 

Figure 8.5 
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So we have 

{ (y, X) = m(X, X) +_b(l, X), 

(Y, 1) = m(X, 1) + b(l, 1). 

We now solve the system (3). 

So 

Also, 

So 

(X, I)(Y, X) = m(X, I)(X, X) + b(X, 1)(1, X), 

(X, X)(Y, 1) = m(X, X)(X, 1) + b(X, X)(I, 1). 

(X, I)(Y, X) - (X, X)(Y, 1) _ 
(X, 1)2 - (X, X)(I, 1) = b. 

(1, I)(Y, X) = m(l, I)(X, X) + b(l, 1)(1, X), 

(1, X)(Y, 1) = m(1, X)(X, 1) + b(l, X)(I, 1). 

(1, I)(Y, X) - (1, X)(Y, 1) _ 
(1, I)(X, X) - (1, X)(X, 1) = m. 

Expressed in terms of Xi' Yi' this gives 

(3) 

(4a) 

(4b) 

(5a) 

(5b) 

Here, each sum is taken from i = 1 to i = n. Finally, the line L, which 
gives the least deviation from our data points, is given by: 

L:y = mx + b, 

where m, b are given by (5a) and (5b). 

Exercise 1. Find an equation for the line of least deviation for the data points: 
(x l' yd = (1, 1), (x2, Y2) = (2, 2) (x3, Y3) = (3, 4). 

Exercise 2. The weight (in ounces) wand the age (in months) t of lobsters from a 
certain area are believed to be approximately related by the formula: w = mt + b, 
where m and b are certain constants. Lobsters are caught and t and ware 
determined, giving 

t = 4, w = 7 

t=8, w=9 

t = 16, w = 11 

t = 18, w = 11. 

(a) Find the straight line of least deviation for these data points. 
(b) Predict the weight of a two-year-old lobster. 
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Exercise 3. Let (XI' YI), ... , (x.y.) be n data points, such that 

• • LXi = 0 and LYi=O. 
i=1 i==1 

Show that the line L of least deviation passes through the origin, and find its 
slope. 

Exercise 4. Let (XI' yd, ... , (x., Y.) be n arbitrary data points. Put 

• • 
x = (lin) LXi' Y = (lin) L Yi' 

i=1 i=1 

Show that the line L of least deviation for these data points passes through the 
point (x, y). 



CHAPTER 8.2 

Curvature of Function Graphs 

One of the nicest applications of linear algebra to geometry comes in the 
study of total curvature of graphs of functions of two variables. We shall 
see how a very natural construction leads to a self-adjoint linear transfor­
mation, the eigenvalues and eigenvectors of which have particular geomet­
ric significance. 

Consider a function /(x, y) of two variables, and consider its graph in 
three-dimensional space. This graph is a surface with equation: z = /(x, y). 
We will assume that /(0, 0) = 0, so the graph goes through the origin. We 
can always arrange this by translating the graph in a vertical direction. 
Furthermore, we will assume that the tangent plane to the graph at the 
origin is the horizontal plane, so the partial derivatives /,,(0, 0) and /,(0, 0) 
are both zero. In order to investigate the way in which the graph is curved 
in a neighborhood of the origin, we may consider slices of the graph by 
vertical planes through the origin. 

One such plane is the x-z coordinate plane with equation: y = 0. The 
portion of the graph lying in this plane is the curve of points (x, O,J(x, 0)). 
We may determine whether this curve is concave up or concave down by 
computing the second derivative /",,(x, 0). If this value is positive for 
x = 0, the curve is concave upwards at the origin, and if it is negative, 
concave downwards. Similarly, the portion of the surface lying in the y-z 
coordinate plane is given by putting x = 0, so we get a curve of points 
(0, y,J(O, y)), which is concave up or down depending on whether the 
second derivative /,,(0, y) is positive or negative at 0. 

For example, if /(x, y) = ax2 + by2, then /",,(0,0) == 2a and /,,(0,0) = 
2b, so these slice curves are concave up or down in a neighborhood of the 
origin depending on whether a and b are positive or negative. 

It may happen that this way of determining the shape of the surface is 
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Figure 8.6 

inconclusive, for example, if f(x, y) = 2xy, then f(x, 0) = 0 and f(O, y) = 0, 
so fxAx, 0) = 0 and fyy(O, y) = 0, for all x and y. However, in this case, the 
slice over the line x = y is a parabola pointing up, since f(x, x) = x 2, while 
over the line x = - y, the slice curve is a parabola pointing down, since 
f(x, -x) = _x2. This surface is shown in Figure 8.7. 

How much information do we need in order to determine the shape of 
the surface? To answer this question, we first recall the formula for the 
curvature of the curve: z = z(t) in the plane. The curvature is defined to be 
z"(t)/(1 + Z'(t)2)3/2 so at t = 0, this curvature is z"(O)/(l + Z'(Of)3/2 = z"(O), 
provided that z'(O) = O. 

Returning to our graph z = f(x, y), we now consider the slice curve 
above the line x = t cos ,p, Y = t sin,p, with slope tan,p. Here ,p is a fixed 
angle, and t is the variable parameter. The z coordinate z(t) = f(t cos ,p, 
t sin ,p), and so, by the chain rule, z'(t) = fAt cos ,p, t sin ,p) cos ,p + 
fy(t cos ,p, t sin ,p) sin,p. Note that z'(O) = 0, since fAO,O) = 0 = fy(O, 0). 
Then z"(t) = fxx(t cos ,p, t sin ,p) cos2 ,p + 2fxy(t cos ,p, t sin ,p) cos ,p sin ,p + 
f,y(t cos ,p, t sin ,p) sin2 ,p. So we have 

z"(O) = fxx(O, 0) cos2 ,p + 2fxy(0, 0) cos ,p sin ,p + fyy(O, 0) sin2 ,p. (1) 

Thus it is that the curvature of the slice above the line with slope tan ,p 
is a quadratic expression in cos,p and sin,p, with coefficients that are 
partial derivatives of the function f(x, y) evaluated at the origin. 
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Figure 8.7 

Definition. The normal curvature of the graph z = f(x, y) in the direction ,p 
is the curvature of the slice curve over the line with slope tan,p at the 
origin. It is denoted k(,p). 

The normal curvature k(,p) = z"(O) and, hence, is given by formula (1). 
We can get a geometrically more enlightening formula for k(,p) as follows: 

We denote by II the xy plane, z = 0, and on this plane we consider the 
linear transformation A with matrix 

( fxAO, 0) fxy(O, 0)) 
fxy(O, 0) hy(O, 0) , 

called the Hessian of f at (0, 0). Fix an angle ,p and denote by X the 

vector (c~s ,p) in II. Then 
sm ,p 

AX . X = (fxAO, 0) fxiO, 0)) (c~s ,p) . (c~s ,p) 
fxy(O, 0) fyy(O, 0) sm ,p sm ,p 

= fxx(O, 0) cos2 ,p + 2fxy(0, 0) cos ,p sin ,p + fyy(O, 0) sin2 ,p. 

By (1) it follows that 

AX· X = k(,p). (2) 
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z 

Figure 8.8 

Now the matrix of A is symmetric, so by the results in Chapter 2.6, A 
has unit eigenvectors Xl' X2 in n with Xl' X2 = O. Denoting the corre­
sponding eigenvalues by kl' k2' then, 

AXI = klXI and AX2 = k2X2. 

We choose the indices so that kl ~ k2. 
Now let X = (cos t/J, sin t/J) be a unit vector in n and let () denote the 

angle measured counterclockwise in n, from Xl to X. 
Then X = (cos ()XI + (sin ()X2' and so, AX· X = «cos ()k l Xl + 

(sin ()k2X2 )' «cos ()X I + (sin ()X2), or AX· X = cos2 ()k l + sin2 ()k 2. For­
mula (2) leads to Euler's formula: 

k(t/J) = (cos2 ()k l + (sin2 ()k2· (3) 

We choose the angle ()o so that Xl = (cos eo, sin eo)· Then t/J = eo + e. 
n 

When e = 0, and so t/J = eo, then k(t/J) = kl and when e = - and so 
2 

t/J = eo + ~, then k(t/J) = k2 (see Figure 8.9). 

Exercise 1. Show that the normal curvature always lies between the values k2 and 
kl' that is, that 

The two extreme normal curvatures kl and k2 are called the principal 

curvatures and the corresponding directions: t/J = eo and t/J = ()o + ~ are 

called the principal directions of the surface z = f(x, y) at the origin. The 
principal directions, thus, lie along the eigenvectors Xl and X2 • 

Note: If kl = k2' then all vectors X in the tangent plane are eigenvectors. 
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y 

n 

x 

Figure 8.9 

EXAMPLE 1. Let L denote the cylinder: x 2 + (z - 1)2 = 1 with axis along 
the y axis and radius 1. L passes through the origin and its tangent plane 
at the origin is the horizontal plane. We shall calculate the principal 
directions and the principal curvatures for L at (0,0,0). We write L, near 
the origin, as the graph 

z = 1 -~ = f(x, y). 

x 
Then fyy = fxy = 0, and fx = ~. So fx = fy = 0 at (0,0). Also 

v 1- x 2 

1 
fxx = (1 _ X 2 )3/2' 

so fxx(O, 0) = 1. So 

( fxx(O, 0) fxy(O, 0)) = (1 0). 
fxiO, 0) hy(O, 0) 0 0 

The eigenvalues of this matrix are 0 and 1, so kl = 1 and k2 = O. The 
corresponding eigenvectors are (0, 1) for k2 and (1,0), for k1 • Thus the 
principal directions in this case are along the coordinate axes. 

1t 
Exercise 2. Find the normal curvature k(¢J) in Example 1 when ¢J = 4 and sketch 

the corresponding slice curve. 
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Exercise 3. Let L be the sphere: x2 + y2 + (z - a)2 = a2. 

(a) Find the principal curvatures of L at the origin. 
(b) Calculate k(,p) for an arbitrary angle ,po 
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Exercise 4. Let L be the surface: z = (sin x)(sin y). Find the principal curvatures 
and the principal directions for L at the origin. 



Index 

Addition 
of matrices, 44, 122 
of transformations, 44, 122 
of vectors, 98, 208, 230 

Additive identity, 7 
Additive inverse, 5, 7 
Algebra of vectors, 3 
Area of a paralle1ogram, 21, 66, 108 
Associative law, 7 

for dot product, 12 
for matrices, 43 
for scalars, 7 
for vectors, 7 

Basis, 240 
Basis vectors, 5, 99, 198, 238 
Bilinear, 253 

Cauchy-Schwarz inequality, 202 
Centroid, 200 
Characteristic equation, 78, 164, 266 
Column of a matrix, 126, 213, 245 
Commutative law 

for addition, 7 
for dot product, 12 

Commuting transformation, 41 
Complex numbers, 237 

Conic sections, 85 
Coordinate, 3, 98 
Coordinate axis, 5, 99, 198 
Coordinates relative to a basis, 255 
Cross product, 107 
Cube, four-dimensional, 204, 220 
Curvature, 296 

Data points, 291 
Degenerate parallelogram, 37 
Degree of a polynomial, 236 
Dependent, linearly, 8, 101, 238 
Derivative, 276 
Determinant, 60, 151, 216 
Diagonalization,271 
Diagonal matrix, 47, 130 
Diagonal of a matrix, 153 
Difference of vectors, 7, 101, 210 
Differential system, 276, 283, 289 
Dimension of a vector space, 238, 

244 
Directed line segment, 3 
Distance, 10, 104 
Distributive law 

for dot product, 12 
for scalars, 7 
for vectors, 7 

Dot product, 11, 102, 201, 230 



304 

Eigenvalue, 75, 163, 226 
Eigenvector, 75, 163 
Elementary matrix, 47, 128 
Ellipse, 95 
Ellipsoid, 203 
Elliptical cylinder, 204 
Equality of transformations, 28 
Equivalence of systems, 221 
Euler's formula, 299 
Existence of solutions, 136, 229 
Exponential of a matrix, 278 

First-order differential equation, 286 
Function space, 253 

Gaussian elimination, 221 
General position, 211 
Gram-Schmidt orthonormalization, 

258 

Hessian, 298 
Homogeneous system, 57, 148, 218, 245 
Hyperbola, 95 
Hyperbolic cylinder, 204 
Hyperboloid, 203 
Hypercube, the, 212 
Hyperplane, 201, 237 

Identity 
matrix, 31, 118 
transformation, 30 

Image 
of a set, 35, 121, 216 
of a vector, 23, 113, 205 

Inhomogeneous system, 226, 245 
Initial condition, 276 
Inner product, 253 
Inverse 

of a matrix, 56, 137 
of a transformation, 51, 133, 217 

Isometry, 69, 171 

Law of cosines, 17, 103,202 
Least squares approximation, 291 

Length, 200, 253 
Length of a vector, 10, 102,200 
Line along a vector, 4,209 
Linear 

Index 

dependence, 101, 238 
independence, 101,239 
transformation, 30, 113, 213, 243 

Linear combination, 101 
Linearly dependent, 8, 101, 237 
Linearly independent, 101, 237 

Mathematical induction, 257 
Matrix, 30,117,213 

relative to a basis, 247 
Midpoint, 10, 210 
Multiplication, scalar, 4, 98, 205, 230 

Negatively oriented, 61, 158 
Negative of a vector, 5 
Nonhomogeneous system, 148 
Normal curvature, 298 

One-to-one, 243 
Onto, 243 
Orientation 

of a pair of vectors, 61 
of a triplet of vectors, 158 

Orthogonal decomposition, 260 
Orthogonal matrix, 177, 272 
Orthogonal projection, 262 
Orthogonal vectors, 17, 253 
Orthonormal basis, 255 
Orthonormal set, 203 

Parallelogram, 7, 37 
Parameter, 9 
Parametric representation, 9 
Partial fractions decomposition, 233 
Permutation, 46 
Permutation matrix, 46, 128 
Perpendicular, 17 
Polar angle, 10 
Polar form of a vector, 11 
Polynomials, 236 
Positive definite, 96 



Index 

Positively oriented, 61, 158 
Power of a matrix, 87 
Preserving angle, 72 
Preserving orientation, 63, 159 
Principal curvatures, 299 
Principal directions, 299 
Product of matrices, 42, 125 
Product of transformations, 39, 124 
Projection 

to a coordinate axis, 14 
to a hyperplane, 205 
to a line, 18, 103, 126, 205 
to a plane, 104, 127 

Pythagorean Theorem, 10, 102, 122 

Quadratic form, 89, 269 
Quadric surface, 202 

Range of a transformation, 113,205, 
243 

Reciprocal, 50 
Reflection, 23, 113, 205 
Regular simplex, 201 
Reversing orientation, 65 
Rotation, 25, 115 

about an axis, 172 
in a plane, 207 

Row vectors, 137, 246 

Scalar, 4, 98 
Scalar multiplication, 4, 98, 208, 230 
Second-order differential equation, 286 
Self-adjoint transformation, 263 
Shear matrix, 129 
Simplex, four-dimensional, 212 
Solution of an inhomogeneous system, 

244 

Solutions of differential systems, 282 
Spectral Theorem, 182, 265 
Standard basis, 239 
Stretching, 25, 115 
Subspace, 221, 235 
Sum 

of matrices, 44, 123 
of transformations, 44, 122 

Symmetric matrix, 79, 178, 263 
Systems 

of differential equations, 274 
of linear equations, 57, 147, 220 

Transformation, 23, 113, 205 
Translate of a subspace, 231 
Transpose of a matrix, 154, 263 
Trigonometric sums, 236 
Trivial solution, 57, 148 

Uniqueness 
of inverses, 53, 136 
of solutions, 148, 229, 287 

Unit 
circle, 10 
sphere, 112,200 
vector, 10, 112, 200 

Vector, 1, 3, 98, 197 
Vector space, 235 
Vector-valued function, 98 
Volume of a parallelepiped, 111, 

161 

Zero transformation, 31, 115 
Zero vector, 4 

305 



Undergraduate Texts in Mathematics 

(continuedjrompoge II) 

LidllPilz: Applied Abstract Algebra. 
Macki-Strauss: Introduction to Optimal 

Control Theory. 
MaUtz: Introduction to Mathematical 

Logic. 
MarsdenIWeinstein: Calculus I, II, III. 

Second edition. 
Martin: The Foundations of Geometry 

and the Non-Euclidean Plane. 
Martin: Transformation Geometry: An 

Introduction to Symmetry. 
MillmanlParker: Geometry: A Metric 

Approach with Models. Second 
edition. 

Moschovakis: Notes on Set Theory. 
Owen: A First Course in the 

Mathematical Foundations of 
Thermodynamics. 

Palka: An Introduction to Complex 
Function Theory. 

Pedrick: A First Course in Analysis. 
PeressinilSullivanlUhl: The Mathematics 

of Nonlinear Programming. 
PrenowitrlJantosciak: Join Geometries. 
Priestley: Calculus: An Historical 

Approach. 
Protter/Morrey: A First Course in Real 

Analysis. Second edition. 
ProtterlMorrey: Intermediate Calculus. 

Second edition. 
Ross: Elementary Analysis: The Theory 

of Calculus. 

Samuel: Projective Geometry. 
Readings in Mathematics. 

Scharlau/Opolka: From Fermat to 
Minkowski. 

Sigler: Algebra. 
Silvermanffate: Rational Points on 

Elliptic Curves. 
Simmonds: A Brief on Tensor Analysis. 

Second edition. 
Singerrrhorpe: Lecture Notes on 

Elementary Topology and Geometry. 
Smith: Linear Algebra. Second edition. 
Smith: Primer of Modem Analysis. 

Second edition. 
StantonlWhite: Constructive 

Combinatorics. 
Stillwell: Elements of Algebra: 

Geometry, Numbers, Equations. 
Stillwell: Mathematics and Its History. 
Strayer: Linear Programming and Its 

Applications. 
Thorpe: Elementary Topics in 

Differential Geometry. 
Troutman: Variational Calculus and 

Optimal Control. Second edition. 
Valenza: Linear Algebra: An 

Introduction to Abstract Mathematics. 
WhyburnlDuda: Dynamic Topology. 
Wilson: Much Ado About Calculus. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>

    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <>

    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




